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Abstract:
Multi-carrier energy systems have been identified as a major concept for future energy supply.
For their operation, model-based control methods are necessary whose design requires modular,
multi-physical control-oriented models. In literature, there exists no control design model which
combines the variables of the networks and system dynamics that go beyond ideal storage
elements. Port-Hamiltonian systems represent a promising approach for the scalable modeling
and control of multi-carrier energy systems. In this publication we present a case study
which illustrates the port-Hamiltonian modeling of an exemplary coupled electricity and gas
distribution system. Simulations indicate the plausibility of the presented model.
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1. INTRODUCTION

Multi-carrier energy distribution systems (MEDSs) consist
of distribution networks for different energy carriers (e.g.
electricity, gas, district heat) which are coupled by energy
converting devices. Model-based control methods enable a
safe, reliable, and efficient operation of MEDSs (Rehtanz,
2014). Multi-physical control-oriented models of MEDSs
represent the starting point for the design of such control
methods. Due to the complexity of MEDSs, modularity
and scalability are key requirements for the models. A
MEDS can be subdivided into three basic types of com-
ponents: (a) subsystems for the generation, conversion,
storage, and consumption of energy; (b) networks for the
distribution of energy; (c) interfaces for controllable and
uncontrollable interaction with the system environment.
Following from these components, a MEDS model has
to take account of variables which are related to (a) the
dynamics of the MEDS; (b) the state of the network, e.g.
voltages and currents in the electrical network, or pressures
and volume flows in the gas network; (c) the controllable or
uncontrollable interaction with the system environment.
Mancarella (2014) provides an overview and discussion
of different models for multi-carrier energy systems. The
most widespread approach is the power flow-based energy
hub concept (Geidl and Andersson, 2005) and extensions

thereof (Schulze and Del Granado, 2010). Following an
input-output paradigm, energy hubs are capable of mod-
eling conversion and storage of energy. However, the net-
works are not part of the concept. Arnold et al. (2009)
extend the energy hub concept by networks. However,
system dynamics are still limited to storage elements which
impedes the integration of more complex dynamic sub-
systems such as second or third order generator models
(Dörfler and Bullo, 2012). Besides energy hubs, there is
a number of simulation-oriented approaches for modeling
multi-carrier energy systems. In their most general form
these approaches lead to differential-algebraic equations
(DAEs) or partial DAEs (Jansen and Tischendorf, 2014)
that are not applicable for control design. Martinez-Mares
and Fuerte-Esquivel (2012) and Sirvent et al. (2017) pro-
pose simplified steady state models for coupled electricity
and gas transmission systems. The models contain the
network variables; system dynamics are not incorporated.
de Durana et al. (2014) developed an agent-based multi-
carrier energy system model, which incorporates the net-
work variables and system dynamics induced by storage
systems. However, the model does not consider the consti-
tutive relations of the gas network. In conclusion, to the
best of the authors’ knowledge, there exists no control-
oriented model of MEDSs which combines the network
variables, their constitutive relations, and system dynam-
ics that go beyond storage elements.
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Due to their multi-physical and modular nature, port-
Hamiltonian systems (PHSs) represent a promising ap-
proach for the modeling and control of MEDSs with great
potential for the scalability of methods. There have been
studies addressing the modeling of electrical power systems
with PHSs (Fiaz et al., 2013). However, this is the first
study which investigates the modeling of MEDSs with
PHSs. The investigation is based on a case study in which
an exemplary 20 kV electrical distribution system coupled
with a 3 bar (gauge pressure) gas distribution system is
modeled. The approach can serve as a blueprint for the
modeling of comparable MEDSs. The contributions of this
publication are as follows: (a) formulation of the consti-
tutive relations of the network variables for an electrical
distribution network and a gas distribution network in the
generalized bond graph (GBG) framework; (b) integration
of the network models into a PHS model of an exemplary
MEDS, which includes a wind turbine, a power-to-gas
(P2G) unit, a battery system, and a gas storage; (c)
simulation and plausibility check of the MEDS model on
the basis of real measurement data and data from state-
of-the-art simulation software.

2. BASIC CONCEPT

PHSs are based on the idea of port-based modeling, which
focuses on the conservation of energy as a fundamental
physical property. A key aspect of the PHS framework is
the mathematical formalization of network interconnection
structures as Dirac structure which can be identified with
the generalized junction structure of a GBG. It comprises
elements of type 0-/1-junction, transformer, and gyrator.
Depending on the representation of their underlying Dirac
structure, PHSs can either be represented in an explicit
form such as the input-state-output form

ẋ = (J(x) − R(x)) ∂H

∂x
(x(t)) + g(x)u + k(x)d (1)

(with J(x) = −JT(x), R(x) = RT(x) ≥ 0, H(x) being
the Hamiltonian of the system, u being the vector of con-
trolled interaction, and d being the vector of uncontrolled
interaction) or by an implicit representation

F1 ẋ(t) = E1
∂H

∂x
(x(t)) + F2 f2(t) + E2 e2(t) (2)

with (ẋ, ∂H(x)/∂x,f2, e2) satisfying the constitutive rela-
tions of the energy storage, resistive, control, and interac-
tion elements (Duindam et al., 2009, pp. 85–89). Equation
(2) results from a Dirac structure in kernel representation

[F1 | F2]︸ ︷︷ ︸
F

[
−ẋ
f2

]
+ [E1 | E2]︸ ︷︷ ︸

E

[
∂H(x)/∂x

e2

]
= 0 (3)

satisfying
rank [F | E ] = n, F ,E ∈ Rn×n, (4)
EF T + FET = 0. (5)

PHSs provide a promising approach for systematic mod-
eling of MEDSs, since their structural properties can be
related to the inherent characteristics of MEDSs:
Multi-physical nature PHSs enable the handling of

MEDSs within one single framework. Moreover, the
Hamiltonian H(x) provides an important information
for the operation of MEDSs as it represents the total
stored energy in the system.

HV network (110 kV)

LV networks (400V)LP networks (25mbar)

HP network (16 bar)

P2G 20 kV
3bar

wind

sleeve

Fig. 1. Schematic of the exemplary system
Modularity PHSs provide a separation of system topol-

ogy and physical characteristics of components. More-
over, the power-conserving interconnection of PHSs
leads to a PHS as well (Duindam et al., 2009, pp. 99–
107), which offers great potential for the development of
scalable control methods for MEDSs.

3. CASE STUDY

In this section, we present the modeling of a coupled
electricity and gas distribution system which is based on
a real energy system. The model aims at an application
to energy management control and MEDS monitoring and
thus incorporates dynamic processes with time constants
T ≥ 1 s. The modeling procedure is as follows: (i) definition
of subsystems and abstraction of the MEDS as a directed
graph, (ii) modeling of the subsystems, (iii) composition
of the entire system model by extracting a Dirac structure
from the generalized junction structure of the overall
GBG.
As shown in Fig. 1, the electrical system is given by a
three-phase 20 kV medium voltage (MV) network with
four transformer substations. At the first substation, the
network is connected to a 110 kV high voltage (HV)
network. Each substation is connected to a subordinate
400 V low voltage (LV) network. The last substation is
connected to a wind turbine and a battery system. The
gas system consists of a meshed 3 bar infrastructure (gauge
pressure) with six gas pressure regulating stations. The
first pressure regulating station is connected to a 16 bar
high pressure (HP) gas transmission system. Between the
first and second pressure regulating station, there is a
branch where a gas storage is connected. The regulating
stations supply the customers at 25 mbar low pressure
(LP) level. Note that along the mesh there are pipes with
different diameters which may be connected by a sleeve.
The electricity and gas distribution systems are coupled
via a P2G unit. In Fig. 1, the system boundary is depicted
by a dashed line. As can be seen, superordinate and
subordinate networks as well as the ambient atmosphere
are interpreted as part of the system environment.

3.1 Abstraction as Directed Graph

According to Hohmann et al. (2017), a MEDS can be ab-
stracted as a directed graph. For the example system, the
abstraction is depicted in Fig. 2. Transformer substations,
pressure regulating stations, branch points, sleeves, and
subsystems for the generation, conversion or storage of
energy are modeled as vertices. The superordinate and
subordinate networks are modeled by a single super source
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Fig. 3. GBG of the exemplary system
vertex and a super sink vertex for each energy carrier.
Moreover, the inflow of wind power is also represented by
a source vertex. We assume the vertices Ve = {1, 2, 3, 4}
to represent transformer substations, the vertices Vg =
{5, . . . , 13} to represent vertices of the gas network, the
vertex Vc = {14} to represent the P2G unit, the vertices
Vd = {15, 16, 17} to represent subsystems for the genera-
tion or storage of energy, the vertices Vs = {18, 19, 20} to
represent source vertices, and the vertices Vt = {21, 22}
to represent sink vertices. Lines, pipes, and connections
to subsystems, sources or sinks are modeled by edges.
We assume the edges Ee = {1, 2, 3} to represent lines,
the edges Eg = {4, . . . , 12} to represent pipes, the edges
Ec = {13, 14} to represent the P2G input and output,
the edges Ed = {15, 16, 17} to represent connections to
subsystems, the edges Es = {18, 19, 20} to represent con-
nections to source vertices, and the edges Et = {21, . . . , 29}
to represent connections to sink vertices. Altogether, a
graph G = (V, E) is obtained, where V = ∪j∈ΛVk and
E = ∪j∈ΛEk with Λ = {e, g, c, d, s, t}. The incidence matrix
of the graph is of the following structure

B =




Be 04×9 Bc,e Bd,e Bs,e Bt,e
08×3 Bg Bc,g Bd,g Bs,g Bt,g
01×3 01×9 Bc 01×3 01×3 01×9
03×3 03×9 03×2 −I3×3 Bs,d 03×9
03×3 03×9 03×2 03×3 −I3×3 03×9
02×3 02×9 02×2 02×3 02×3 Bt




, (6)

where 0i×j and Ii×j represent zero and identity matrices
of size (i, j), respectively. The submatrices Bχ, Bc,χ, Bd,χ,
Bs,χ, and Bt,χ represent the internal interconnection
structure of the network vertices and their connections to
converters, subsystems, sources, and sinks in the electricity
and gas domain χ ∈ {e, g}. The submatrix Bc describes
the relation between the converter vertex and edges. The
submatrix Bs,d represents the influence of the ambient at-
mosphere on subsystems. The submatrix Bt describes the
relation between the sink vertices and the corresponding
edges. Vertices v ∈ Ve and v ∈ Vg represent voltage and
pressure nodes, respectively, which corresponds to effort

nodes in the generalized framework. Flows over the edges
a ∈ Ee ∪Ed,e ∪Es,e ∪Et,e and a ∈ Eg ∪Ed,g ∪Es,g ∪Et,g specify
currents and volume flows, respectively, which corresponds
to flows in the generalized framework.

3.2 Subsystem Modeling

Electrical Line The set Ee represents three-phase lines in
the electrical network. As our model focuses on dynamic
processes with time constants T ≥ 1 s, the electrical
network can be assumed to be in steady state, which
leads to a phasor representation of the network variables
(Dörfler and Bullo, 2012). The three-phase system of
lines is modeled by considering the single-phase equivalent
(Schiffer et al., 2016), where a single-phase line segment
is described by a π-section equivalent circuit (Fiaz et al.,
2013) with its phasor bond graph (Núñez Hernández et al.,
2014) depicted in Fig. 4(a). The generalized variables
are two-dimensional phasors, which contain the real and
imaginary parts of the complex voltages and currents they
represent. At MV level, the π-section equivalent circuit can
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Fig. 4. Phasor bond graphs of a π-section equivalent circuit
(a) and an ohmic-inductive line (b)

further be simplified by neglecting the shunt parameters
(Heuck et al., 2010, pp. 238–239). Hence, electrical lines are
modeled by an ohmic-inductive, single-phase equivalent
circuit. Its corresponding phasor bond graph is illustrated
in Fig. 4(b). The constitutive equations for the impedances
are given by (Núñez Hernández et al., 2014)[�{�eRi}

�{�eRi}

]
= Ri

[
1 0
0 1

] [
�{�fRi}
�{�fRi}

]
, i ∈ Ee, (7)

[
�{�eXi}
�{�eXi}

]
= Xi

[
0 −1
1 0

] [
�{�fXi}
�{�fXi}

]
, i ∈ Ee. (8)

Gas Pipe Pressure is the essential operational variable
in gas networks. Pipe models usually focus on wall friction
effects which cause pressure drops over the length of
a pipe. These pressure losses are commonly calculated
by the Darcy-Weißbach equation (Cerbe, 2004, p. 123)
that results from the conservation of momentum under
the following idealization assumptions congregated from
Cerbe (2004), Lurie (2008), and Rüdiger (2009):
(1) One-dimensional flow in x direction
(2) Constant pipe parameters A, d, l, and k
(3) All variables specifying the gas flow are average values

over the cross-sectional area A
(4) Independence of ambient temperature T due to un-

derground placement of pipes at distribution level
(5) Calculation of λ limited to turbulent flows (Zanke’s

equation)
(6) Inner friction in the gas is neglected
(7) Stationary gas flow
(8) Incompressible gas (hence, mass flow conservation

simplifies to volume flow conservation)
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(9) Besides wall friction, no other effects that cause
pressure differences between the start and end of a
pipe (e.g. elevation profile) are considered

It establishes a nonlinear, resistive relation for the pressure
losses induced by a volume flow through a pipe

∆pR = sgn(Q) · λ(Q) · � · l

2 · d · A2 · Q2 (9)

with volume flow Q = v · A, gas density �, pipe length l,
pipe diameter d, and cross-sectional area A. The dimen-
sionless pipe friction factor λ(Q), which is essential for the
consideration of friction pressure losses, is calculated by
the explicit equation after Zanke (Cerbe, 2004, p. 124). As
a result, the pipes can be modeled as shown in the GBG
in Fig. 3. According to (9), the constitutive equations of
the resistive elements are given by

eRj = Rj(fRj)f2
Rj , j ∈ Eg. (10)

Network Vertices The vertices in the electrical network
v ∈ Ve and in the gas network v ∈ Vg are modeled as
lossless effort nodes, which are subject to Kirchoff’s current
law. Hence, they are described by a 0-junction.

Environmental Interaction The MEDS in Fig. 1 is sub-
ject to multiple interactions with its system environment.
From a PHS point of view, these interactions are part
of the interaction port I. Firstly, the electrical and gas
networks are connected to superordinate networks. As
the voltages and pressures at higher system levels are
only slightly affected by the MEDS, the superordinate
networks can be modeled as ideal effort sources. Secondly,
the transformer substations and gas pressure-regulating
stations are connected to subordinate networks. Fiaz et al.
(2013) model the subordinate networks as resistive ele-
ments. However, in MEDSs the demand of these networks
is highly volatile and cannot be modeled by a constant
resistor. Instead, the subordinate networks are modeled
as ideal flow sources. Thirdly, the MEDS is subject to in-
teraction with its ambient atmosphere. Regarding the ex-
emplary MEDS, wind power induces a mechanical torque
on the rotor blades of the wind turbine. Hence, the wind
power interaction is modeled by an ideal flow source.

Power-to-gas Unit Vertex v ∈ VC = {14} represents
the P2G unit which transforms electrical energy to syn-
thetic gas through a complex process comprising elec-
trolysis and methanization. Since this process has to be
controlled, the subsystem P2G unit represents a closed-
loop system. However, the original application of the PHS
approach is the modeling of open-loop systems and their
subsequent control on the basis of the open-loop model.
Hence, the representation of already closed-loop systems
within the PHS framework poses a non-trivial challenge.
We address this issue by considering the P2G unit as
modulated transformer with time-varying transformation
factor α(t) to model controlled behavior. All conversion
losses are summarized on electrical DC side by a single
series resistance. Furthermore, the P2G unit is assumed
to consume purely active power, i.e. the phasors �I13 and
�U1 that specify the power infeed into the P2G unit are in
phase. Since �U1 = U1 = e13 is set as reference voltage for
the electrical network, �I13 = I13 = f13. Thus, the P2G
connection to the electrical network can be modeled as

single bond instead of a phasor bond. The resulting GBG
is illustrated in Fig. 5. The resistor is specified by Ohm’s

1

MR:R13(t)

eout

fout

e13

f13

eR13 fR13

MTF:α(t). . . . . .

Fig. 5. GBG of the P2G unit

law eR13 = R13 · fR13 with

R13(t) = e13(t)
f13(t) · (1 − η). (11)

The resistance (11) is obtained from the power balance
Pout = ηP13 = P13 − PR, (12)

ηe13f13 = e13f13 − eR13fR13. (13)
Insertion of eR13 = R13 · fR13 and fR13 = f13 yields

ηe13 = e13 − R13f13, (14)
which can easily be transformed into (11).

Wind Turbine A wind turbine is a complex dynamic
system which contains numerous control loops. Hackl et al.
(2015) developed a high-order dynamic model of variable-
speed synchronous generator wind turbines for the relation
between the incoming wind speed and the produced power
output. The model includes dynamic processes down to a
time scale of microseconds. As the MEDS model of our
publication aims at time constants T ≥ 1 s, the model of
Hackl et al. (2015) is simplified by making the following
assumptions:
(1) The dynamics are reduced to the rotor inertia and

the DC link capacitor. Electrical losses are neglected.
(2) The current IW = f16 fed into the network is taken as

control variable (�{IW} = 0). The issue of modeling
the closed-loop behavior caused by the generator
current controller is addressed similarly to the P2G
unit by a time-varying conversion factor β(t).

By these assumptions, a second-order explicit PHS model
of the wind turbine can be formulated as[

ẋ1
ẋ2

]
=

[
0 − 1

β(t)
1

β(t) 0

]

︸ ︷︷ ︸
J

∂HW
∂x

+
[
0
1

]
u +

[
1
0

]
d, (15)

[
z
y

]
=

[
1 0
0 1

]
∂HW
∂x

, (16)

HW = 1
2J x2

1 + 1
2C x2

2. (17)
The two energy states are given by the angular momentum
of the wind turbine rotor x1 = L and the charge of
the DC link capacitor x2 = Q. For convenience and
in consideration of the phasor network modeling, the
controllable input u = IW is set to the real part of the
phasor �f16 with �{�f16} = 0. The uncontrollable input
is the wind-induced torque d = Mwind = fwind that
acts on the rotor. The corresponding controllable and
uncontrollable outputs are given by y = �{�e16} and z =
ewind. The parameters J and C are the turbine’s inertia
and the capacitance of the DC link capacitor, respectively.
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(9) Besides wall friction, no other effects that cause
pressure differences between the start and end of a
pipe (e.g. elevation profile) are considered

It establishes a nonlinear, resistive relation for the pressure
losses induced by a volume flow through a pipe

∆pR = sgn(Q) · λ(Q) · � · l

2 · d · A2 · Q2 (9)

with volume flow Q = v · A, gas density �, pipe length l,
pipe diameter d, and cross-sectional area A. The dimen-
sionless pipe friction factor λ(Q), which is essential for the
consideration of friction pressure losses, is calculated by
the explicit equation after Zanke (Cerbe, 2004, p. 124). As
a result, the pipes can be modeled as shown in the GBG
in Fig. 3. According to (9), the constitutive equations of
the resistive elements are given by

eRj = Rj(fRj)f2
Rj , j ∈ Eg. (10)

Network Vertices The vertices in the electrical network
v ∈ Ve and in the gas network v ∈ Vg are modeled as
lossless effort nodes, which are subject to Kirchoff’s current
law. Hence, they are described by a 0-junction.

Environmental Interaction The MEDS in Fig. 1 is sub-
ject to multiple interactions with its system environment.
From a PHS point of view, these interactions are part
of the interaction port I. Firstly, the electrical and gas
networks are connected to superordinate networks. As
the voltages and pressures at higher system levels are
only slightly affected by the MEDS, the superordinate
networks can be modeled as ideal effort sources. Secondly,
the transformer substations and gas pressure-regulating
stations are connected to subordinate networks. Fiaz et al.
(2013) model the subordinate networks as resistive ele-
ments. However, in MEDSs the demand of these networks
is highly volatile and cannot be modeled by a constant
resistor. Instead, the subordinate networks are modeled
as ideal flow sources. Thirdly, the MEDS is subject to in-
teraction with its ambient atmosphere. Regarding the ex-
emplary MEDS, wind power induces a mechanical torque
on the rotor blades of the wind turbine. Hence, the wind
power interaction is modeled by an ideal flow source.

Power-to-gas Unit Vertex v ∈ VC = {14} represents
the P2G unit which transforms electrical energy to syn-
thetic gas through a complex process comprising elec-
trolysis and methanization. Since this process has to be
controlled, the subsystem P2G unit represents a closed-
loop system. However, the original application of the PHS
approach is the modeling of open-loop systems and their
subsequent control on the basis of the open-loop model.
Hence, the representation of already closed-loop systems
within the PHS framework poses a non-trivial challenge.
We address this issue by considering the P2G unit as
modulated transformer with time-varying transformation
factor α(t) to model controlled behavior. All conversion
losses are summarized on electrical DC side by a single
series resistance. Furthermore, the P2G unit is assumed
to consume purely active power, i.e. the phasors �I13 and
�U1 that specify the power infeed into the P2G unit are in
phase. Since �U1 = U1 = e13 is set as reference voltage for
the electrical network, �I13 = I13 = f13. Thus, the P2G
connection to the electrical network can be modeled as

single bond instead of a phasor bond. The resulting GBG
is illustrated in Fig. 5. The resistor is specified by Ohm’s
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Fig. 5. GBG of the P2G unit

law eR13 = R13 · fR13 with

R13(t) = e13(t)
f13(t) · (1 − η). (11)

The resistance (11) is obtained from the power balance
Pout = ηP13 = P13 − PR, (12)

ηe13f13 = e13f13 − eR13fR13. (13)
Insertion of eR13 = R13 · fR13 and fR13 = f13 yields

ηe13 = e13 − R13f13, (14)
which can easily be transformed into (11).

Wind Turbine A wind turbine is a complex dynamic
system which contains numerous control loops. Hackl et al.
(2015) developed a high-order dynamic model of variable-
speed synchronous generator wind turbines for the relation
between the incoming wind speed and the produced power
output. The model includes dynamic processes down to a
time scale of microseconds. As the MEDS model of our
publication aims at time constants T ≥ 1 s, the model of
Hackl et al. (2015) is simplified by making the following
assumptions:
(1) The dynamics are reduced to the rotor inertia and

the DC link capacitor. Electrical losses are neglected.
(2) The current IW = f16 fed into the network is taken as

control variable (�{IW} = 0). The issue of modeling
the closed-loop behavior caused by the generator
current controller is addressed similarly to the P2G
unit by a time-varying conversion factor β(t).

By these assumptions, a second-order explicit PHS model
of the wind turbine can be formulated as[

ẋ1
ẋ2

]
=

[
0 − 1

β(t)
1

β(t) 0

]

︸ ︷︷ ︸
J

∂HW
∂x

+
[
0
1

]
u +

[
1
0

]
d, (15)

[
z
y

]
=

[
1 0
0 1

]
∂HW
∂x

, (16)

HW = 1
2J x2

1 + 1
2C x2

2. (17)
The two energy states are given by the angular momentum
of the wind turbine rotor x1 = L and the charge of
the DC link capacitor x2 = Q. For convenience and
in consideration of the phasor network modeling, the
controllable input u = IW is set to the real part of the
phasor �f16 with �{�f16} = 0. The uncontrollable input
is the wind-induced torque d = Mwind = fwind that
acts on the rotor. The corresponding controllable and
uncontrollable outputs are given by y = �{�e16} and z =
ewind. The parameters J and C are the turbine’s inertia
and the capacitance of the DC link capacitor, respectively.
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Energy storages Similar to the P2G unit, the energy
storages v ∈ {15, 17} are closed-loop systems whose de-
tailed modeling is outside the scope of this publication.
Generally, energy storage in the GBG framework is repre-
sented as C-type storage element described by an energy
state x. However, in the present closed-loop case, the
relation between e and x cannot simply be expressed by
a constant C. This issue is addressed by considering the
energy storages as flow sources. The stored energy of the
storage systems can then be calculated as

E = −3 ·
∫

�{�e15 · �f∗
15} dt −

∫
e17 · f17 dt, (18)

where the factor 3 stems from the three-phase nature of
the electrical system.

3.3 Overall Model

The modeling process is concluded by reassembling the
GBGs of the separately modeled subsystems into the
GBG in Fig. 3. The gray bonds indicate the three-phase
nature of the electrical system. Note that the constitutive
equations for the pipe resistances are nonlinear. Thus,
the PHS derived from this GBG cannot be given in
standard input-state-output form but results in an implicit
formulation (van der Schaft and Jeltsema, 2014, p. 53).

Dirac Structure From the generalized junction structure
of the GBG (circled in gray in Fig. 3), it is straightforward
to obtain the Dirac structure without the explicit wind
turbine PHS. It is specified by F̃ f̃ + Ẽẽ = 0 with 1 × 43
vectors ẽ = [ ee eg ]T , and f̃ = [ fe fg ]T , where the first
13 elements are two-dimensional phasors
ee = [ �eRi �eXi �e15 �e16 �e18 �e21 . . . �e24 ]T , i ∈ Ee, (19)

fe =
[

�fRi
�fXi

�f15 �f16 �f18 −�f21 . . . −�f24
]T

, (20)
and the remaining 17 elements are the generalized vari-
ables
eg = [ eRj e14 e17 e19 e25 . . . e29 ]T , j ∈ Eg, (21)
fg = [ fRj f14 f17 f19 −f25 . . . −f29 ]T , (22)

of the P2G unit and the gas domain (see Fig. 3). The
matrices F̃ and Ẽ are of corresponding size 43 × 43 and
cannot be given explicitly for reasons of space. They simply
represent the 0-/1-junction, and MTF equations which
correlate the generalized variables ẽ and f̃ . Hence, they
contain entries inside the set {0, ±1, α(t)}.

Implicit Port-Hamiltonian System Model The implicit
PHS model of the MEDS is given by

F̃ f̃ + Ẽẽ = 0, (23)[�{�eRi}
�{�eRi}

]
= Ri

[
1 0
0 1

] [
�{�fRi}
�{�fRi}

]
, (24)

[
�{�eXi}
�{�eXi}

]
= Xi

[
0 −1
1 0

] [
�{�fXi}
�{�fXi}

]
, (25)

eRj = Rj(fRj)f2
Rj , (26)

H(x) = HW(x) = 1
2J x2

1 + 1
2C x2

2, (27)


ẋ1
ẋ2

ewind
�{�e16}


 =

[
J2×2
I2×2

]
∂H

∂x
+

[
I2×2
02×2

] [
fwind

−�{�f16}

]
, (28)

with i ∈ Ee and j ∈ Eg, where (24) and (25) are the
constitutive equations for the line impedances, (26) are the
nonlinear, constitutive equations for the pipe resistances
and (27) is the Hamiltonian that represents the stored
energy in the wind turbine. The total stored energy within
the MEDS is given by

E = H(x) − 3 ·
∫

�{�e15 · �f∗
15} dt −

∫
e17 · f17 dt. (29)

Equations (23) and (28) can be transformed to (2) by

[
I2×2
045×2

][
ẋ1
ẋ2

]
=

[
J2×2

−I2×2
043×2

]
∂H

∂x
+




1
02×6

0
02×360 −1

... 02×43

0 F̃43×43




[
fwind
f̃

]

+




02×44
1

02×6
0
02×360 1

043×1 Ẽ43×43




[
ewind
ẽ

]
. (30)

All remaining, unspecified elements are either effort or flow
sources. Their constitutive equations are time series for the
efforts ej with j ∈ Vs and flows fj with j ∈ Et ∪ {15, 17}.
Note that (30) is a DAE system (cf. Beattie et al. (2017)).

4. SIMULATION

In order to assess the plausibility of the obtained im-
plicit PHS model, it is implemented in OpenModelica and
simulated by using the dassl solver with default param-
eters. The simulation is performed on the basis of real
measurements provided by a distribution system operator
and data obtained from the gas network analysis tool
STANET. As the closed-loop behavior of the MEDS shall
be evaluated, the control signals and parameters need
to be specified. For the wind turbine, a maximum point
power tracking generator control and a PI controller for
the DC link is implemented (Hackl et al., 2015, p. 1608).
For the electrical storage, gas storage, and P2G unit,
heuristic control schemes are applied. For reasons of space
it is not possible to present the simulation inputs at this
point. Instead, the complete set of parameters is provided
on https://www.irs.kit.edu/mathmod18.php. The data
feature a winter scenario with significant wind velocities
and thus prevailing wind power infeed at vertex 4. This
causes reversed power flow from vertex 4 to vertex 1,
and from there into the HV level. In the gas distribution
system, a high gas consumption with volume flows up to
0.25 m3/s is represented.
In Fig. 6, the magnitude of the measured voltage U1,
which serves as a simulation input, is depicted in gray.
In addition, the magnitude of the simulated voltage U4 is
illustrated in black. It is evident that the magnitude of U4
is higher than the magnitude of U1, which corresponds to
the expected behavior caused by the wind power infeed at
vertex 4. As there are more measurements than simulation
inputs, the simulated magnitude of U4 can be compared
with the measured magnitude U4, which is not part of
the simulation. By this comparison an average error of
−58.53 V is obtained. Referred to nominal voltage of 20 kV,
the corresponding average relative error is −0.293 %. In
Fig. 7, three simulated vertex pressures in the gas distribu-
tion system are illustrated. It is observed that the pressure
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Fig. 7. Simulated pressures at vertices 5,8,13 (solid,
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decreases the further the pressure nodes are away from the
pressure control station at vertex 5. Due to the modeled
friction effects this behavior is plausible. In the course
of the simulated scenario, the deviation of the simulated
pressures from the provided STANET data remains below
140 Pa. Referred to nominal gauge pressure of 3 bar this
corresponds to a relative error of less than 0.05 %.

5. CONCLUSION

PHSs represent a consistent approach for the control-
oriented modeling of MEDSs. Due to the modularity of
PHSs, subsystems can be modeled individually and after-
wards be integrated in an overall system model. Resulting
from a nonlinear resistive relation, the PHS cannot be for-
mulated in the standard input-state-output form (van der
Schaft and Jeltsema, 2014, p. 53). Instead, an implicit
differential-algebraic PHS can be obtained. The modeling
of closed-loop subsystems proved to be challenging. Future
work will address this issue and generalize the case study
of this publication to the modeling of arbitrary MEDSs.
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