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a b s t r a c t

The Power-to-Gas (PtG) process chain could play a significant role in the future energy system.
Renewable electric energy can be transformed into storable methane via electrolysis and subsequent
methanation.

This article compares the available electrolysis and methanation technologies with respect to the
stringent requirements of the PtG chain such as low CAPEX, high efficiency, and high flexibility.

Three water electrolysis technologies are considered: alkaline electrolysis, PEM electrolysis, and solid
oxide electrolysis. Alkaline electrolysis is currently the cheapest technology; however, in the future PEM
electrolysis could be better suited for the PtG process chain. Solid oxide electrolysis could also be an
option in future, especially if heat sources are available.

Several different reactor concepts can be used for the methanation reaction. For catalytic methanation,
typically fixed-bed reactors are used; however, novel reactor concepts such as three-phase methanation
and micro reactors are currently under development. Another approach is the biochemical conversion.
The bioprocess takes place in aqueous solutions and close to ambient temperatures.

Finally, the whole process chain is discussed. Critical aspects of the PtG process are the availability of
CO2 sources, the dynamic behaviour of the individual process steps, and especially the economics as well
as the efficiency.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In its Renewable Energy Roadmap 21, the European Commission
has proposed a target of 20% renewable energy in the EU's overall
energy mix by 2020 [1]. Thereby, wind and solar energy play an
important role. In 2013, wind power had already comprised a high
share of the electricity supply. In Denmark (34%) and Spain (21%),
wind energy has become the largest source of electricity; also
Portugal (>20%), Ireland (>16%), and Germany (9%) have reached
high shares [2]. The total world installed wind capacity increased
from17,400MW in 2000 to 318,105MW in 2013 [3]. However, wind
and solar energy are fluctuating and intermittent and have to be
balanced for electric grid stability purposes. Consequently, long
term and large capacity electricity storage is required, as well as
reserve production capacity. In Germany, e.g., the residual power
capacity is estimated to be 30e60 GW.
Ltd. This is an open access article u
The Power-to-Gas (PtG) technology might contribute to tackling
this issue. The PtG process links the power grid with the gas grid by
converting surplus power into a grid compatible gas via a two-step
process: H2 production by water electrolysis and H2 conversion
with an external CO or CO2 source to CH4 via methanation (Fig. 1).
The resulting CH4, known as substitute natural gas (SNG), can be
injected into the existing gas distribution grid or gas storages, used
as CNG motor fuel, or it can easily be utilised in all other well-
established natural gas facilities. The total world storage capacity
of natural gas is > 3600 TWh [4] (total world power production
from wind and solar power in 2012: 639 TWh [5]).

The importance of PtG for handling high shares of renewable
energies is being discussed at length [6e10]. The scope of this re-
view paper is to describe the technological and economic diffi-
culties, thus the general necessity of PtG will not be the subject of
this article. Due to the large number of papers on Power-to-Gas, this
review focuses on Power-to-Methane. An alternative would be
direct injection of H2 into the gas grid. However, the amount of H2
in the gas grid is limited by country specific standards and regu-
lations to a maximum of 0e12 vol.% [11].
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Exemplary Power-to-Gas process chain.
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The main drawbacks of Power-to-Gas are a relatively low effi-
ciency and high costs. These aspects will be discussed in Section 5.

The Power-to-Gas process chain was first proposed in Japan in
the 1980se1990s [7]. Hashimoto et al. proposed a global CO2
recycling using sea water and built a pilot plant in 2003 [8]. A
broader interest in Power-to-Gas has begun to grow (especially in
Europe) in recent years driven by the increasing share of wind and
solar power [12e17]. In the meantime, there is a significant amount
of Power-to-Gas research in different countries. Some examples are
Switzerland, Denmark, France, Japan, and Germany where pilot
plants are under construction or even in operation (see Sections 3.2
and 5.4).

An alternative to SNG is the production of liquid energy carriers
such as methanol, dimethyl ether (DME), and Fischer-Tropsch
products or the production of chemicals [18e21]. In the future,
the photocatalytic conversion of CO2 and H2O to methane or other
fuels could be an interesting alternative to the proposed PtG chain
[22]. However, this technology is still in an early development
stage.

2. Hydrogen supply

2.1. Fundamentals

Water electrolysis to yield H2 and O2 (Eq. (1)) is an electro-
chemical reaction which can be segmented into 2 steps. At the
negatively charged cathode the reduction reaction takes place (Eq.
(2)), while the oxidation reaction occurs at the positively charged
anode (Eq. (3)). Depending on the technology, the charge carrier
can be OH�, H3Oþ, or O2� (see Table 1).

H2OðlÞ/H2ðgÞ þ½O2ðgÞ DH0
r ¼ þ285:8 kJ=mol Eq. 1

H2Oþ 2e�/H2 þ O2� Eq. 2

O2�/½O2 þ 2e� Eq. 3

For calculating equilibria (Fig. 2), the Gibbs free energy of water
electrolysis DG0

r is expressed by the equilibrium cell voltage (Eq.
(4)), where n is the number of transferred electrons counted in
moles and F is the Faraday constant, converting electric properties
into thermodynamic and vice versa:

DG0
r ¼ nFE0V DG0

r ¼ þ237:1 kJ=mol Eq. 4
As depicted in Fig. 2, temperature has a positive influence on the
water electrolysis reaction, while pressure has a negative influence.

The most important parameters of the electrolysis technologies
are efficiency, flexibility, and lifetime. The different technologies
will be discussed in Section 2.2.

2.2. Water electrolysis

Excess electrical energy can be used to produce hydrogen via
water electrolysis. H2 can be converted into methane with a suit-
able carbon source or it can be directly injected into the gas grid or
used for fuel cell vehicles. Water electrolysis is a well understood
technology. Thereby, developments in fuel cell technology also
helped to improve water electrolysis technologies. Three different
electrolysis technologies are of interest for PtG process chains:
alkaline electrolysis (AEL), polymer electrolyte membranes (PEM),
and solid oxide electrolysis (SOEC). The key operational parameters
of the three electrolysis technologies are summarized in Table 1.

2.2.1. Alkaline electrolysis (AEL)
Of the three types of electrolysis technologies considered for PtG

plants, alkaline electrolysis is the most mature and well understood
technology (commercially available for decades [23]). In AEL, an
aqueous alkaline solution (KOH or NaOH) is used as the electrolyte.
AEL works either atmospherically or under elevated pressure. Ac-
cording to Smolinka et al. [24], pressurized alkaline electrolysers
have a lower efficiency and produce a lower purity product than
atmospheric AEL. The foremost advantage of pressurized AEL
compared to atmospheric AEL is that it produces compressed
hydrogen (either for grid injection or further use) with less addi-
tional energy input [25]. This is a result of the fact that the reduc-
tion in electric efficiency of the electrolysis with increased pressure
(see Fig. 2) is lower than the energy needed to compress the pro-
duced hydrogen.

According to manufacturers, AEL electrolysers can be operated
between 20 and 100% of the design capacity, and overload opera-
tion up to 150% is possible. This operation window makes AEL a
good choice for systems such as PtG which are coupled with a
fluctuating and intermittent power supply. However, Gahleitner
[26] reports problems with intermittent and fluctuating power
sources. One problem is that it takes 30e60 min to restart the
system following a shutdown [27]. Continuous operation of AEL
systems is advised [27]. The biggest disadvantage of AEL is that the
utilised electrolytes (alkaline solution, e. g. 20e30 % potassium
hydroxide solution) are highly corrosive, thus necessitating high



Table 1
Summary of the key operational parameters of Alkaline, PEM, and Solid Oxide Electrolysis.

Alkaline electrolysis PEM electrolysis Solid oxide electrolysis

State of development Commercial [23] Commercial [35,36] Laboratory [30]
H2 production in m3/h (STP,

per system)
<760 [34]
z2.7 MW

Up to z 450 [36]
z1.6 MW

e

Electrolyte Alkaline solution Solid polymer membrane (Nafion) ZrO2 ceramic doped with Y2O3

Charge carrier OH� H3Oþ/Hþ O2�

Cell temperature in �C 40e90 [30] 20e100 [30] 800e1000 [39]
Cell voltage in V 1.8e2.4 [24] 1.8e2.2 [24] 0.91 [29]e1.3 [37]
System power consumption

(current) in kWh/m3 H2 (HS)a
4.5e7 [24]
4.7e5.4 [33]
5.4e8.2 [46]

4.5e7.5 [24]
5.2e7.1 [33]
4.9e5.2 [46]

e

System power consumption
(future) in kWh/m3 H2 (HS)

4.3e5.7 [24] 4.1e4.8 [24] e

Cold start time Minutesehours [24,27,33] Secondseminutes [24,31,33] e

Advantages Available for large plant sizes, cost,
lifetime [29,47]

No corrosive substances, high power densities,
high pressure > 100 bar, dynamics [24,30,33,34]

High electrical efficiency, integration
of waste heat possible [37,38,48]

Disadvantages Low current density, maintenance costs
(system is highly corrosive) [24,30,33,34]

Expensive, fast degradation [30e34] Limited long term stability of the
cells [29], not suited to fluctuating
systems [24], expensive [29,37]

Transient operation Possible, but leads to problems [26,27];
reduction up to 20% load possible;
overload operation possible [33,34]

Better than AEL [26], dynamic adjustment
possible, partial (down to 5%) and overload
operation possible [24,27,31,33]

Not well suited [24]

Renovations/lifetime Renovations stack: 8e12 a [24]
Lifetime: up to 30 a [28]

Lifetime: 5 a [26], shorter lifetime than
AEL [29]

e

a Further data from suppliers and demo plants are given in Refs. [26,29].
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maintenance costs. A general overhaul of the system is necessary
every 7e12 years [24]. According to [28], the expected lifetime for
an alkaline electrolyser is currently about 30 years, which is high
compared to the other considered electrolyser types. In recent
years, AEL has been optimised, especially with respect to efficiency
and total investment.

2.2.2. Polymer electrolyte membrane (PEM) electrolysis
Compared to AEL, PEM is a relatively new technology, with the

first commercial PEM electrolyser available for purchase in 1978
[29]. The technology is based on solid polymer membranes [30].
According to [26], the main advantages of PEM include faster cold
start, higher flexibility, and better coupling with dynamic and
intermittent systems. Furthermore, the purity of the produced H2 is
very high [31]. The minimum load is reported to be 5% [24,27].
However, this technology is currently more expensive than AEL
systems (due to the costs for the membrane and the use of a noble
metal catalyst), and the limited life expectancy is also disadvanta-
geous [30e34]. PEM electrolysers in the MW scale have recently
become available (Proton Onsite and Siemens) [35,36].
Fig. 2. Equilibrium cell voltage as function of temperature for different pressure levels.
2.2.3. Solid oxide electrolysis (SOEC)
Solid Oxide Electrolysis (also known as high temperature elec-

trolysis) is the most recently developed electrolysis technology and
is still at the laboratory stage. In SOEC, ZrO2 doped with 8 mol%
Y2O3 is used as the electrolyte, which at high temperatures is highly
conductive for oxygen ions (charge carrier), and has good thermal
and chemical stability [37,38]. The high temperature reduces the
equilibrium cell voltage (see Section 2.1) and therefore the elec-
tricity demand [39]; however, the heat demand increases with
increasing temperature. The low electricity demand is the most
significant advantage of SOEC systems. Theoretically, electrical ef-
ficiencies above 100% could be achieved (endothermic mode)
[38,39]. In particular, the combinationwith exothermal reactions in
PtG and PtL process chains leads to a higher overall efficiency
[34,40e44]. According to [45], the heat utilisation is not reasonable
for PtG as electrical energy storage. The specific cell area and the
investment per hydrogen unit produced increase with increasing
heat integration. Due to the low capacity utilisation, electrical en-
ergy storage requires a low investment.

The biggest challenges for SOEC systems are the fast material
degradation and the limited long term stability, both of which are
due to high temperature operation [29]. Furthermore, the high
temperature level means that the product stream from the elec-
trolyser is a mixture of hydrogen and steam, and requires additional
processing; thereby further increasing the capital costs. Moreover,
SOEC systems are not stable against fluctuating and intermittent
power sources [24,29].
2.2.4. Cost analysis
Currently, capital expenditures for AEL are predicted to be

significantly lower than for PEM. Fig. 3 compares the specific in-
vestment for hydrogen production indicating the significant dif-
ferences between the electrolysis technologies. According to
[33,34,37,49], currently the investment for PEM systems is at least
two times that of AEL systems. The investment for AEL is on the
order of magnitude of 1000 V/kW (equivalent to 5060 V$h/(m3 H2)
for 70% electrical efficiency), whereby the costs depend on the
specific conditions (e.g. pressure and size) [28,33,49]. According to
Siemens (reported in Ref. [33]), PEM electrolysis will be available
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for < 1000 V/kW already in 2018, whereas in Ref. [49] a PEM price
of 1250 V/kW is expected for 2020.

For SOEC systems, limited information is available. Mougin
et al. [37] estimated the price for manufacturing and selling a
SOEC system which can produce 46.4 m3/h (100 kg/day) of H2. An
annual production scale of 100 systems was used for the calcu-
lation. A selling price of approximately 11,200 V h/(m3 H2) was
calculated and compared to selling prices of comparable AEL and
PEM systems. According to them, estimated SOEC prices are
comparable to the upper range of prices estimates for PEM sys-
tems. In Refs. [49], SOEC specific costs of 1000 V/kW are predicted
for 2030 (equivalent to 3540 V$h/(m3 H2) for 100% electrical
efficiency).

2.3. Hydrogen storage

Another challenge for PtG systems is the temporary storage of
hydrogen necessitated by the fluctuating power supply and
consequent intermittent operation of the electrolyser. For the
hydrogen storage, the size and necessary peripheral equipment is
highly variable and depends on the configuration and the operating
parameters of the system [26].

Several probable methods exist for the hydrogen storage:
compressed gas tanks, cryogenic compressed liquid hydrogen
tanks, metal hydride storage, physical storage, and underground
storage (e.g. salt caverns). Storage of hydrogen as a cryogenic liquid
is a technical challenge as well as energetically inefficient [50]. The
unstable pressure, continuous leakage of gas, and expensive insu-
lation, make cryogenic liquid hydrogen storage a poor choice for
PtG applications.

Another option for hydrogen storage is the physical storage of
hydrogen in underground caverns. Although this option is the
cheapest option of all storage methods mentioned here, this stor-
age is better suited for high capacity, long term hydrogen storage
[46,51]. Thus, it is not a viable option for PtG systems, which require
small scale, onsite, and temporary hydrogen storage.

The two best options for the temporary hydrogen storage are
high pressure gas tanks (350e700 bar) or metallic hydride tanks.

According to Gahleitner [26], hydrogen storage within PtG sys-
tems (both planned and realised in 2012) in high pressure gas
cylinders is the current and future method of choice. As an alter-
native, metal hydride tanks were installed in 12% of the PtG plants
included in the study. However, they are more expensive.
Fig. 3. Comparison of the current selling prices of AEL, PEM, and SOEC systems
([37,49], data for ELB Elektrolysetechnik and Siemens from Ref. [33]).
3. Methanation for Power-to-Gas applications

3.1. Fundamentals

Methanation can be done both in biological and catalytic
methanation reactors (see Fig. 4). To compare the methanation
technologies, different parameters have been chosen:

� Achievable gas quality of the product gas
� Reactor volume needed to reach the required gas quality and
volumetric flow

� Complexity of the process setup

One possible approach to compare reactor performance is to
compare the Gas Hourly Space Velocity (GHSV) of different reactor
concepts. Therefore, a definition according to Eq. (5) is used. In this
case, FV,G,in is the volumetric flow rate (STP) of the feed gas without
any inert gases and with a stoichiometric H2/CO2-ratio. VR is the
reactor volume. If the concept is based on a series of reactors, then
the sum of all reactor volumes is used.

GHSV ¼ FV ;G;in
VR

Eq. 5

The properties of SNG produced in a PtG chain must be similar
to the properties of natural gas distributed in the gas grid. Typically,
natural gas contains more than 80% CH4 [52]. Further important
components are higher hydrocarbons, e. g. ethane, propane, and
butane which increase the calorific value compared to pure
methane. On the other hand, inert components such as CO2 or N2
can be found in natural gas and have a corresponding lowering
effect on the calorific value.

Typically, CO2 methanation on nickel catalysts has a selectivity
of almost 100% [53e59]. The lack of higher hydrocarbons in the SNG
may result in a calorific value of SNG produced from CO2 metha-
nation that is lower than the calorific value of natural gas.

Fig. 5 shows that a CO2 conversion of almost 98% is required to
achieve a methane content of >90%, whereas a CO2 conversion of
99% correlates with a methane content of 95%. Inert gases or
hyperstoichiometric H2/CO2 ratios make it impossible to achieve
highmethane contents. As a consequence, the requirements for the
methanation reactor are very high.
3.1.1. Thermodynamics
Several reactions play a role in the methanation process: the CO

(Eq. (7)) and the CO2 hydrogenation (Eq. (6)) are accompanied by
other reactions such as the reverse water gas shift reaction (Eq. (8))
and the Boudouard reaction (Eq. (9)). The CO2 hydrogenation can be
seen as the combination of CO hydrogenation and reverse water-
gas shift.

CO2ðgÞ þ 4 H2ðgÞ#CH4ðgÞ þ 2 H2OðgÞ DH0
r ¼ �165:1 kJ=mol

Eq. 6

COðgÞ þ 3 H2ðgÞ#CH4ðgÞ þH2OðgÞ DH0
r ¼ �206:3 kJ=mol

Eq. 7

CO2ðgÞ þ H2ðgÞ#COðgÞ þ H2OðgÞ DH0
r ¼ þ41:2 kJ=mol

Eq. 8

2 COðgÞ#CðsÞ þ CO2ðgÞ DH0
r ¼ �172:5 kJ=mol Eq. 9

CO and CO2 hydrogenation are highly exothermic reactions with
the consequence that high temperatures limit the CO and especially



Catalytic methanation
(250 - 550 °C, 1 - 100 bar)

Biological methanation
(20 - 70 °C, 1 - 10 bar) Reactor concepts

Fixed-bed:
- Adiabatic
- Isothermal

Fluidized-bed

Three phase:
- 3 phase fluidized-bed

 - Bubble column

Structured:
- Honeycomb

- Microchannel
- Sorption enhanced

CSTR

Others:
- Membrane
- Trickle-bed
- Fixed-bed

Fig. 4. Reactor concepts for the production of SNG.
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the CO2 conversion. As illustrated in Fig. 6, a temperature below
225 �C (1 bar) or 300 �C (20 bar) is required to reach a CO2 con-
version of at least 98%. Additionally, the positive effect of pressure,
as previously addressed, is apparent from the results shown in
Fig. 6. Consequently, an elevated pressure should be used for the
methanation.

3.2. Catalytic methanation

3.2.1. Reactor concepts
The catalytic methanation reaction has been known since 1902

[60]. Since the oil crisis in the 1970s, the use of methanation for the
production of SNG from synthesis gas has gained increasing inter-
est [56]. CO2 methanation for SNG production has also been
investigated for decades [54,61e63]. Several reactor concepts
(mostly fixed-bed) for large scale coal-to-gas plants have been
developed [64]. However, the PtG chain requires novel concepts
which are optimised for smaller plant sizes and intermittent or
dynamic operation.

Catalytic methanation reactors are typically operated at tem-
peratures between 200 �C and 550 �C and at pressures ranging from
1 to 100 bar. Several metals such as Ni, Ru, Rh, and Co may be used
as the catalyst for the methanation reaction. However, most often
Ni is considered to be the optimum catalyst choice due to its
Fig. 5. Relationship between CO or CO2 conversion and methane content in the dry
SNG (no inert gas; H2/CO ¼ 3 and H2/CO2 ¼ 4, respectively; 100% selectivity).
relatively high activity, good CH4 selectivity, and low raw material
price [56,65]. However, nickel based catalysts require a high purity
of the feed gas (with respect to halogeneous and sulphurous
compounds, among others) [66,67].

The methanation reaction is highly exothermic. Assuming a
GHSV of 5000 h�1 and a total CO2 conversion, approx. 2 MW heat
per m3 catalyst bed need to be removed (methanol synthesis:
approx. 0.6 MW/m3). As a consequence, a significant issue in a
methanation reactor is to realise good temperature control in the
reactor in order to prevent thermodynamic limitation and catalyst
sintering. In order to meet this essential objective, several steady-
state reactor concepts have been developed, namely fixed-bed,
fluidized-bed, three-phase and structured reactors. Fluidized-bed
reactors as well as fixed-bed reactors are established technolo-
gies, while the other reactor concepts are in the development
phase. The development of these methanation reactor concepts has
already been reviewed elsewhere [64,68]. A list of research groups
working on the different concepts can be found in Table 2, where
almost 30 groups were identified indicating a large interest in
methanation. Each of these reactor concepts offers a different
approach to overcome the issue related to the reaction heat
removal.

For adiabatic fixed-bed reactors, the usual approach relies on a
series of adiabatic reactors, typically 2e5, with intercooling and
sometimes with gas recirculation [69,70]. Due to the adiabatic
Fig. 6. Equilibrium conversion as well as H2 and CH4 content for CO2 methanation
((H2/CO2)in ¼ 4, no inert gases).



Table 2
Overview of research groups working on catalytic methanation reactor concepts (sorted by country in alphabetical order).

Fixed-bed Fluidized-bed Three-phase methanation Structured reactor

Montan Universit€at, Leoben, Austria [86] Beijing University of Chemical
Technology, China [87]

Chinese Academy of Sciences,
Taiyuan, China [77]

Montan Universit€at, Leoben, Austria [86]

Unit�e de Catalyse et de Chimie du Solide,
Villeneuve d’Ascq, France [88]

Chinese Academy of Sciences,
Beijing, China [87,89]

DVGW and KIT, Karlsruhe,
Germany [58,59,75]

Tsinghua University, China [82]

Deutsches Biomasseforschungszentrum,
Leipzig, Germany [70]

Engie SA (former GDF Suez),
Paris, France [90]

Brandenburg University of Technology,
Cottbus, Germany [55]

DVGW and KIT, Karlsruhe, Germany [41] Paul Scherrer Institute, Villigen,
Switzerland [72,73]

DVGW and KIT, Karlsruhe, Germany [91]

Friedrich-Alexander-Universit€at,
Erlangen-Nürnberg, Germany [92]

Karlsruhe Institute of Technology (KIT),
Germany [81]

TU Clausthal, Germany [93] Energy Research Centre of the Netherlands,
Petten, Netherlands [85]

TU München, Germany [94] Instituto Superior T�ecnico, Portugal [95]
Zentrum für Sonnenenergie-und

Wasserstoff-Forschung, Stuttgart, Germany [28]
Zurich University of Applied Sciences with
Laboratory for Hydrogen & Energy,
Switzerland [84]

Tokyo Institute of Technology, Japan [96] Colorado School of Mines, Golden, USA [83]
Energy Research Centre of the Netherlands,

Petten, Netherlands [97]
Columbia University, USA [80]

HSR Hochschule für Technik Rapperswil,
Switzerland [98]

Pacific Northwest National Laboratory,
Richland, USA [83]

Pacific Northwest National Laboratory,
Richland, USA [99]

M. G€otz et al. / Renewable Energy 85 (2016) 1371e13901376
mode of operation, the catalyst must be able to withstand a broad
temperature range (250e700 �C). The main concerns for the cata-
lyst are possible cracking or sintering [67]. Detailed information
about two methanation concepts for PtG plants based on fixed-bed
methanation can be found in Ref. [68]. Alternatively, cooled fixed-
bed reactors can be applied for methanation. Usually, such a
reactor contains cooling tube bundles; a further possibility is the
use of cooled plates [34,64,71]. Due to the cooling, the process
setup is simpler than for adiabatic reactors, however, the reactor
itself is more expensive.

In fluidized-bed reactors, the mixing of fluidized solids leads to
almost isothermal conditions in the reactor facilitating the control
of the operation. Offering more effective heat removal is the major
advantage of this concept, which allows for using one single reactor
with a rather simplified design [72e74]. Nevertheless, due to high
mechanical load resulting from fluidization, attrition processes take
place in relation to the catalyst as well as thewall of the reactor. As a
consequence, the catalyst is eventually deactivated [67]. A further
disadvantage can be the incomplete CO2 conversion caused by
bubbling. In addition, a fluidized-bed reactor is limited by super-
ficial gas velocity within the reactor: it cannot be too low in order to
assure minimum fluidization conditions and cannot be too high in
order to avoid catalyst elutriation.

Other concepts are based on the use of three-phase reactors for
methanation [59,75e78]. Generally, a slurry reactor is filled with a
liquid phase (e. g. heat transfer oils such as Dibenzyltoluene), in
which fine catalyst particles are suspended as a result of the gas
flow. The presence of the liquid phase with high heat capacity al-
lows for effective and accurate temperature control: the heat of
reaction can be completely removed and the reactor can operate
almost isothermally, leading to a simple process design. The chal-
lenges with the use of slurry reactors are a result of gas liquid mass-
transfer resistances and the decomposition and evaporation of the
suspension liquid [58,59,75,79].

Structured reactors such as monolith reactors have been
developed to tackle the drawbacks of adiabatic fixed-bed reactors,
namely temperature hot spots and high pressure drops. Due to
their internal metallic structure, monolith reactors feature an
enhancement of radial heat transport by two to three orders of
magnitude due to heat conduction through the metallic structure
(depending on the metallic material) [80]. A special structured
reactor concept is embodied bymicro structured reactors which are
very compact reactors with a high surface-to-volume ratio. They
combine high heat transfer and a small pressure drop [55,81e83].
Drawbacks of structured reactors are the more complicated catalyst
deposition on the metallic structure, as well as the difficulty of
replacing the deactivated catalyst: once the catalyst has been
deactivated, the whole reactor has to be equipped with a new
catalyst coating.

A further development of structured reactors is the sorption
enhanced methanation reaction concept. The water produced by
the methanation reaction is removed from the gas phase by the
catalyst carrier showing adsorbent functionality. Thereby, ther-
modynamic limitation of the conversion rate (see section 3.1) is
reduced. For the subsequent water removal, temperature swing
and/or pressure swing with or without purge gas can be applied. A
further development of the Zurich University of Applied Sciences
combines this water removal with a regeneration step where the
applied materials can undergo catalytic and microstructure
regeneration [84,85].

3.2.2. Specific catalyst and reactor requirements
Two operation strategies can be developed for a methanation

reactor that is used for PtG applications. The methanation reactor
can be operated either under steady-state or under dynamic con-
ditions. For steady-state operation, a H2-storage with high capacity
is required to allow for a constant H2 flow to the methanation
reactor. However, this augments the PtG facility costs (see Section
5.3). Consequently, the methanation reactor has to be operated
dynamically.

Dynamic operation significantly changes the methanation
catalyst and reactor requirements. One aspect is the stand-by
operation of the reactor. According to Mutz et al. [100], the
methanation catalyst showed a fast bulk-like oxidation in a CO2
atmosphere. For the catalyst stability, a H2 atmosphere would be
advantageous during stand-by operation.

Under dynamic operation, the reactor temperature can severely
change if the reactor heating or cooling cannot be adapted quickly
enough. This strong temperature variation can lead to catalyst
cracking or sintering which diminishes the catalyst lifetime [67].

One way to overcome this problem is to develop catalysts that
can withstand high temperature variations over a long operation
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time. Nevertheless, as far as is known, no research has been done in
this direction.

Another way to overcome the temperature variation issue is to
adapt methanation reactor concepts for dynamic temperature
regulation. R€onsch et al. simulated the temperature increase of an
adiabatic methanation reactor with outlet gas cooling and recir-
culation [101]. They showed that, evenwith an adaptive increase in
gas recirculation, a catalyst temperature increase of more than
30 �C cannot be prevented after a strong increase in inlet gas flow.
Isothermal reactor concepts may show better temperature regula-
tion under dynamic conditions. Lefebvre et al. investigated the
dynamic behaviour of a lab-scale three-phase methanation reactor
and showed that the reactor temperature does not change even
though the gas load at the reactor inlet was varied between 25 and
100% [59]. Consequently, the liquid phase makes the three-phase
reactor less sensitive to fluctuating feed streams.

If the H2 production from the electrolyser is not sufficient, the
methanation reactor may have to be shutdown. In this case, a
reactor with rapid start-up and shut-down is required. ZSW, Ger-
many investigated the start-up and shut-down behaviour of a mi-
cro methanation reactor with an oil cooling system [28]. Reactor
stand-by mode was set at 260 �C and pure H2 atmosphere, while
the methanation operating conditions were set at 650 �C (hot spot
temperature) and 4000 m3 reactant/(m3 catalyst h). They alter-
nated between methanation operating conditions (12 min) and
shutdown (8 min) for more than 900 cycles. They could not observe
any catalyst deactivation and also reached high CO2 conversion,
which is a promising result for PtG technology.

3.3. Biological methanation

Biological methanation (BM) is another option for the PtG pro-
cess chain. Thereby, methanogenic microorganisms serve as bio-
catalysts. In a typical biogas plant, the first step is the hydrolysis of
an organic substrate (biomass) to simple monomers (mono-
saccharide, amino acids, and fatty acids). Subsequently, theses
monomers are converted to acetate, carbon dioxide, and hydrogen
(acidogenesis, acetogenesis). Lastly, the methane is produced by
aceticlastic methanogenesis (depletion of acetate) and hydro-
genotrophic methanogenesis (CO2 reduction with H2) [102,103].
The production of methane directly from CO2 and H2 is done by
microorganisms (cell type: archea), which obtain the energy for
growth by anaerobically metabolising hydrogen and carbon diox-
ide. This biological reaction has been known since 1906 [104] and
the metabolic pathways are shown by Thauer et al. [105]. In BM,
methane is produced via hydrogenotrophic methanogenesis from
CO2 and H2.

3.3.1. Overview
Biological methanation proceeds under anaerobic conditions at

temperatures between 20 and 70 �C (mesophil and thermophil)
Table 3
Reactor performance of separate biological methanation reactors during continuous opera
(for more data see supplementary data).

Author T in �C p in bar Reactor c

Martin, 2013 [109] 60 1
1.22

CSTR

Nishimura et al., 1992 [108] 65 3 CSTR
Seifert, 2014 [111] 65 1 CSTR

Burkhardt, 2014 [112] 37 1 Trickle-be
Jee et al., 1988 [113] 65 1 Fixed-bed

a Based on the liquid volume.
b Based on the bed volume.
and mostly at ambient pressure (Table 3). However, the technical
implementation is still an issue. Important parameters for evalu-
ating the reactor efficiency are the methane formation rate (MFR,
Eq. (10)), the GHSV (Eq. (5)) and themethane content in the product
gas. The efficiency depends, among other things, on the type of
microorganism, cell concentration, reactor concept, pressure, pH-
value, and temperature.

MFR ¼ FV ;CH4;out � FV ;CH4;in

VR
Eq. 10

Since the microorganisms are present in a fermentation broth,
the methanation reaction takes place within the aqueous solution.
Hence, there is an additional gas liquid mass transfer resistance
compared to 2-phase catalytic methanation reactors. The gas liquid
mass transfer to the microorganisms can be described by Eq. (11).
According to this equation, the effective reaction rate ri,eff can be
increased by enhancing the mass transfer coefficient kLa (e. g.
stirring) or by increasing the solubility c*iL (e. g. by an increase in
pressure).

ri;eff ¼
Fðn;i;G

��LÞ
VR

¼ ðkLaÞi$
�
c*i;L � ci;L

�
¼ ðkLaÞi$

 
pi$rL
Hi;L

� ci;L

!

Eq. 11

The Henry's law coefficient for hydrogen in water at 60 �C is
VHH2,H2O ¼ 1408 bar l/mol, while the Henry's law coefficient for
carbon dioxide in water is VHCO2,H2O ¼ 36 bar l/mol [106]. Thus,
carbon dioxide is nearly 23 times more soluble than hydrogen in
the aqueous fermentation liquid. Due to the poor solubility of
hydrogen in the broth (mainly water), improving the hydrogen
supply to the microorganisms by enhancing the mass transfer
(increasing kLa) presents a big engineering challenge.

Mostly, continuous stirred-tank reactors (CSTR) are used to
study BM. By increasing the stirring rate, kLa increases and the
transfer of hydrogen to the liquid can be improved [107]. As a
consequence of the increased stirrer frequency, the energy con-
sumption for the agitation is higher. At elevated pressure and for a
stoichiometric gas mixture (H2/CO2 ¼ 4), the H2 and CO2 mass
transfer to the broth increases (Eq. (11)). Due to the improved
supply of hydrogen, the MFR increases [108,109]. Furthermore, the
CO2 concentration in the broth is higher and therefore the pH value
decreases. To ensure adequate conditions for the microorganisms,
an effective method for controlling the pH value in pressurised
reactors needs to be developed.
3.3.2. Process concepts
Two main process concepts are possible for BM: methanation in

situ digester and methanation in a separate reactor. Both process
concepts are the focus of academic research as well as the focus of
companies working on BM (Table 4).
tion; the composition of the reactant gas is a stoichiometric mixture of (H2/CO2)in¼ 4

oncept MFR in h�1 CH4 content in % GHSV in h�1

1.4a

2a
82.7
81

8.6a

12a

28.7a 13.4 300a

21.3a

5.6a
60
85

120a

29a

d 0.05b 98 0.3b

4.6b 34 30b
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Fig. 7. Process flow diagram for biological methanation in a separate reactor.
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3.3.2.1. Biological methanation in a separate reactor. In a separate
BM reactor, pure gases are converted by methanogen cultures into
CH4 (Fig. 7). This concept offers the possibility to increase the
calorific value of biogas, but it is not limited to biogas as a carbon
source [110]. Another advantage is that the process conditions and
the reactor design can be adjusted with respect to the re-
quirements of the hydrogenotrophic methanogens. Currently,
several reactor concepts are being developed to increase the MFR
by specifically reducing the gaseliquid mass transfer limitations.
In addition to CSTR, fixed-bed, trickle-bed, and membrane reactors
are also being investigated, in which the microorganisms are
immobilized.

The range of reported reactor performance is wide (Table 3).
Comparatively high MFRs of 21.3 and 28.7 h�1 were achieved by
Refs. [111] and [108] using CSTRs operated at a GHSV of 120 and
300 h�1, respectively. However, the product gas has a methane
content of 60 and 13.4%, respectively. This gas is ineligible
to replace natural gas due to the low CH4 content. Seifert et al.
[111] reached a methane content of 85% in the reactor outlet
by reducing the GHSV by a factor of 4. Thereby, the MFR
also decreased by nearly 75%. A methane concentration of 98%
in the product gas is reached by using a trickle-bed reactor
[112]. This high concentration is obtained at a relatively low
GHSV of 0.3 h�1. Furthermore the MFR is comparably low.
Another approach for BM is using a fixed-bed reactor. The studies
of Jee et al. [113] show a MFR of 4.6 h�1 and a pure product yield
of 34%. Compared with the MFR in CSTRs, the MFR obtained in
trickle-bed or fixed-bed reactors are lower. On the other hand a
stirrer is unnecessary and therefore the energy consumption is
lower.

For all investigated reactor designs, the supply of hydrogen to
the microorganisms is the rate limiting step. Therefore, the biggest
challenge for BM is the delivery of the gaseous hydrogen to the
microorganisms. Hence, there is significant potential for process
Table 4
Overview of research groups and companies working on biological methanation (sorted

Institution

Institute of Chemical Engineering, Division Biochemical Engineering,
Vienna University of Technology [111]

Department of Enviromental Engineering, Technical University of Denmark

Faculty of Environmental Science and Process Engineering, Brandenburg
University of Technology Cottbus [114]

State Institute of Agricultural Engineering and Bioenergy, University
of Hohenheim

Krajete GmbH
Electrochaea GmbH
MicrobEnergy GmbH

MicroPyros GmbH
development with respect to the method of hydrogen delivery.
3.3.2.2. In situ biological methanation. Digesters of biogas plants
can be used for the PtG process chain (Fig. 8). Thereby, hydrogen is
fed directly to the biogas digester. A part or all of the CO2 produced
by the aceticlastic methagonese is then in situ converted to CH4
resulting in a biogas with a higher methane content and calorific
value. The methane formation rate of the biological methanation is
limited by the CO2 production rate of the biogas plant. Therefore,
only small MFRs of <0.1 h�1 are possible [115]. Furthermore, the
process conditions cannot be adapted to optimal conditions for the
hydrogenotrophic methanogens (e. g. elevated T and p). Never-
theless, no further reactor is necessary which results in a lower
investment.

Bensmann et al. [116] modelled the steady-state and the dy-
namic behaviour of in situ biological methanation. They assumed
ideal mixing for the liquid phase and plug flow behaviour for the
gas phase. Due to the assumption of a dispersion free gas phase, the
results can be regarded as a best-case approximation with respect
to achievable H2 conversion rates.

Achieving a total conversion of the produced CO2 is very
difficult. For biogas plants using energy crops as feedstock, the
methane content can be increased from 52 to 75 % (values are
reported by MicrobEnergy GmbH, Germany). Luo et al. [110,117]
studied the in situ conversion of the produced CO2 by addition
of H2 in a small scale CSTR (VL ¼ 3.5 l) under ambient pressure at a
temperature of 55 �C. They reached a H2 conversion of approx. 80%
and decreased the CO2 content in the product gas from 38 % to 15
%. Due to the relatively low H2 conversion, the H2 content in the
product gas is 20%. By increasing the hydrogen utilisation
(improved gas liquid mass transfer), the H2 and CO2 content could
be further decreased.
by country in alphabetical order).

Concepts Country

Separate reactor Austria

In situ digester
Separate reactor

Denmark

Separate reactor Germany

In situ digester
Separate reactor

Germany

Separate reactor Austria
Separate reactor Germany, Denmark, USA
In situ digester
Separate reactor

Germany

Separate reactor Germany
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Fig. 8. Process flow diagram for in situ biological methanation.
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4. Comparison of methanation technologies

4.1. Comparison of technical parameters

In this section, the biological methanation in a separate reactor
will be compared with the most common catalytic methanation
concept, adiabatic fixed-bed methanation. Furthermore, data for
three-phase methanation are given. A summary of the results dis-
cussed in this section is given in Table 5.

4.1.1. Required reactor volume (characterised by the GHSV)
It is of interest to compare the required reactor size of biological

methanation with catalytic methanation since reactor size is a
crucial aspect regarding the investment. A direct comparison of the
required reactor volume is possible by comparing the GHSV (Eq.
(5)). However, the GHSV is only comparable if similar conversion
rates are also compared. In this case, a high conversion leading to a
methane content of >90% in the product gas (dry basis) is assumed.

In comparison to biological methanation, catalytic CO2 metha-
nation in a fixed-bed reactor proceeds at a much faster rate, fol-
lowed by three-phase methanation (Table 5). A biological
methanation plant requires a reactor several orders of magnitude
larger to convert a certain feed gas flow comparedwith an adiabatic
fixed-bed reactor.

The maximum GHSV of 100 h�1 for the biological methanation
in combination with a methane content of >90% is an optimistic
value which, based on the published results, was not yet reached
(see section 3.3, Table 3). The data in Table 3 indicate that a GHSV of
<10 h�1 or even <1 h�1 is currently more realistic.

The maximum GHSV of adiabatic fixed-bed reactors of
2000e5000 h�1 assumed for technical plants was in agreement
with data given in Refs. [28,69]. Usually, higher GHSV values can be
achieved in laboratory tests compared with technical plants. For
example, Tada et al. reported a GHSV for catalytic CO2 methanation
of 10,000 h�1 [118]. In technical fixed-bed reactors, the GHSV is
Table 5
Comparison of biological and catalytic methanation processes.

Reactor type BM (separate) isothermal CSTR

Phases involved G, L (,S)
Stages 1
Backmixing High
T in �C 20e70
p in bar <10
Stage of development Lab scale/pilot
GHSV in h�1a << 100 (Table 3)
Tolerance of impurities High
Process materials Nutrients, buffer solution
Heat utilisation Poor

a GHSV which applies to a methane content in the product gas of >90% (dry basis).
lower for different reasons:

� Lower effectiveness factor because of larger particles
� The reactor is oversized to avoid frequent refilling due to catalyst
deactivation

� Series of reactors and recirculation (equilibrium limitations at
high temperatures)

The stark differences between the GHSVs of the methanation
concepts are due to the following three aspects:

1. The most important aspect is the much higher process tem-
perature, 300e550 �C for catalytic methanation versus 40e70 �C
for biological methanation. Higher temperatures usually corre-
late to higher reaction rates.

2. The overall reaction rate is also influenced by mass transfer
phenomena. In particular, the presence of a liquid phase (BM
and 3PM) induces gas liquid mass transfer resistances. The gas
liquid mass transfer is influenced by the volumetric mass
transfer coefficient, kLa, and the solubility (1/Hi,L) (Eq. (11))

3. The third aspect which needs to be considered is the backmixing
of the gas (and liquid) phase. The backmixing in fixed-bed re-
actors is usually very low (PFR behaviour). The backmixing in
the three-phase methanation is low for the gas phase and
moderate for the liquid phase (homogeneous regime). In the
biological methanation reactor, the backmixing depends on the
specific reactor type. In the stirred reactor, the liquid and
probably the gas phase can be assumed as perfectly mixed (CSTR
behaviour).

The influence of these three aspects (temperature, gas liquid
mass transfer, and backmixing) will be discussed for the three-
phase methanation. Fig. 9 compares the calculated conversion
and the calculated CH4 content in the dried product gas for three
cases:
3PM isothermal slurry bubble column Fixed-bed adiabatic

G, L, S G, S
1e2 2e6
Moderate Low
300e350 300e550
z20 >5
Lab scale/pilot Commercial
500e1000 2000e5000
Lowemedium Low
Heat transfer liquid, catalyst Catalyst
Goodevery good Very good
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1. Gas and liquid phases are perfectly mixed (“CSTR”)
2. No backmixing in both phases (“PFR”)
3. No backmixing in both phases and the gas liquid mass transfer

resistance is low, because kLa is increased by a factor of 10
(“PFR þ increased MT”)

The calculations are based on a complex reactor model which is
described in Ref. [58]. Detailed information can be found in the
supplementary data.

As evident, temperature as well as backmixing have strong ef-
fects. An increase in temperature from 250 �C to 300 �C increases
the CH4 content from 13 % to 90 % (PFR case).

The effect of backmixing is relatively small for low conversions
rates; however, at high conversions rates backmixing strongly in-
fluences the methane content in the product gas. At 300 �C, the
methane content is 90% for the PFR case, but only 44% for the CSTR
case. The strong influence of the backmixing at high conversion
rates is a challenge for the biological methanation concepts. To
increase the volumetric mass transfer coefficient kLa, the stirrer
frequency needs to be increased (see section 3.3); however, this
leads to increased backmixing. Reactor concepts achieving high
volumetric mass transfer coefficients as well as a low backmixing
have not yet been developed.

4.1.2. Tolerance of impurities
Depending on the CO2 source, different impurities are present in

the feed gas whichmay affect themethanation process. For a biogas
plant with primary desulphurisation inside the digester, 50e200
ppmv of H2S in the biogas can be expected for corn as a substrate
[119]. The CO2 feed from biogas plants using residues as substrate
can have much higher sulphur loads. Additional impurities include
O2 [120] and siloxanes [119]. Details about impurities in Power-to-
Gas plants can be found in Section 5.1.

Biological methanation is more robust against impurities than
catalytic methanation. For biological methanation, process upset or
infection from foreign organisms was not found to be an issue
[34,115,121]. Minor disruptive components such as sulphur and
oxygenwere found to have no effect on the biological methanation.
Furthermore, some of these components can be partly removed by
biological methanation. However, the remaining sulphur compo-
nents still have to be removed prior to gas grid injection.

Contrastingly, sulphur and sulphur-containing components are
a known catalyst poison for the nickel catalysts used in catalytic
methanation [67,122]. Thus, the feed gas for catalytic methanation
Fig. 9. Influence of temperature, backmixing, and gas liquid mass transfer in a three-phase
basis); H2/CO2 ¼ 4; GHSV ¼ 1200 h�1; tmod,CO2 ¼ 84 kg s mol�1; 20 bar; MT ¼ mass transf
process must be cleaned upstream of the methanation reactor
(sulphur content << 1 ppm).

In the case of fixed-bed reactors, higher hydrocarbons are also
an issue since they decompose at temperatures above z500 �C
forming coke. The deposited coke leads to catalyst deactivation
[123].

4.1.3. Process flexibility and minimum load
For methanation to be operated dynamically as part of a PtG

chain, both the minimum load and the load change rate need to be
considered. A more flexible methanation reactor significantly re-
duces the costs for upstream storage of hydrogen. Since hydrogen
storage is a high cost factor, minimisation of this factor is crucial
(see Section 5.3).

4.1.3.1. Load change rate. Based on the available literature, all three
concepts can be operated dynamically. It was shown that the
biology, the mass transfer, and/or the chemistry react very fast to
load changes [28,59,115,124,125]. Hence, the load change behaviour
of a methanation plant is dominated by the plant design and the
peripheral equipment, respectively.

Fixed-bed methanation reactors are the most sensitive reactor
concepts among those investigated with respect to dynamic or
transient operation. Load changes induce temperature changes in
the catalyst bed causing a runaway or a cooling down of the reac-
tion [28,101]. It is reported that fast load changes can damage the
methanation catalyst; however, measurements of KIT-EBI as well as
ZSW Stuttgart [126] have not shown a negative effect of dynamic
operation on the CO2 methanation catalyst.

The liquid phase present in the biological and the three-phase
methanation buffers the effect of load changes. Lefebvre et al.
[59] have shown that the reactor time constant depended only on
the final gas velocity and the volume of the plant, while the reactor
temperature remained isothermal during all transient operations.

As a consequence, the limiting factor for load changes is related
to the process control system and not to the process itself.

4.1.3.2. Minimum load (but no shutdown). In the following, the
minimum load is discussed with respect to commercial application.
The minimum loads measured in lab scale experiments are usually
not transferable to commercial plants. One reason is that the pe-
ripheral equipment, such as compressors, has a limited operating
range.

For biological methanation, it is reported that there is no
methanation system; left: CO2 conversion; right: CH4 content in the product gas (dry
er.
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minimum load based on biology [115]. However, the operation of
the plant is not reasonable if the energy consumption of the stirrer
exceeds the energy content of the produced SNG (approximation:
minimum load > 10%).

The three-phase methanation can operate within a large load
range. A minimum load of less than 10e20 % is necessary for ho-
mogeneous distribution of the catalyst in the heat transfer oil [28].
Minimum loads of less than 10% should also be possible. However,
this needs to be evaluated in a demonstration scale process.

For adiabatic fixed-bed reactors, a minimum load of 40% is re-
ported by Outotec GmbH [28,127]. However, lower minimum load
rates could be possible with special reactor designs as well as with
cooled fixed-bed reactors [28].

4.1.3.3. Shutdown. Krajete GmbH [115] reports that an immediate
load change from 100 to 0 % can be realised with no negative effect
on the biological methanation process. It was also demonstrated
that a restart following a 560 h of stagnant operation was also
possible without harmful consequences.

A shutdown of a catalytic methanation reactor is also possible.
However, the reactor should be flushed with hydrogen or an inert
gas before shutting down (see Section 3.2.2). Furthermore, the
reactor temperature needs to be kept above 200 �C to avoid for-
mation of nickel carbonyls and to enable a fast restart of the pro-
cess. The high heat capacity of the three-phasemethanation reactor
caused by the liquid phase helps to store the heat after a shutdown
[58].

4.1.4. Current state of development
Currently, biological methanation has only been investigated at

the laboratory or pilot scale (e. g. PtG-Foulum-Project with 50 m3/h
H2 as feed gas and a GHSV < 10 h�1 [34]). Three-phase methanation
has only been tested at the laboratory scale (maximum 1 m3/h H2).
Both are currently being tested at larger scales (see Section 5.4).

A challenge of the BM is the adequate and energy efficient
mixing of a large scale biological reactor with respect to the
hydrogen supply. Crucial parts of the upscaling of 3PM include the
backmixing behaviour and the hydrodynamics in large scale re-
actors. In contrast, fixed-bed methanation is well established in
commercial industry.

4.2. Energy efficiency

4.2.1. Power requirements
All of the catalytic methanation processes have a lower power

requirement than the biological methanation. Most biological
methanation reactors need a stirrer or some kind of agitation
mechanism to effectively introduce H2 into the liquid phase. Ac-
cording to MicroEnergy GmbH [115], approximately 10% of the
energy for the produced SNG is needed for stirring (z1 kWh/m3

SNG). Although, three-phase methanation is also subject to mass
transfer limitations, themass transfer in this case is better than that
for the biological methanation. For three-phase methanation, the
elevated temperature increases the solubility of the H2 in the heat
transfer oil, increases the mass transfer coefficient, as well as in-
creases the phase boundary by reducing the viscosity and the
surface tension. As a consequence, a stirrer is not required; instead,
the dispersion of the gas throughout the reactor occurs using a gas
sparger that is present at the bottom of the reactor [58].

4.2.2. Efficiency of Power-to-SNG and utilisation of waste heat
The methanation reaction is a highly exothermic reaction. To

increase the efficiency of a PtG process chain, use of the heat of
reaction is necessary.

The waste heat from the biological methanation can be used to
heat a biogas digester (e. g. 420 kW for a 5 MWplant [115]). Further
opportunities for utilisation of the waste heat from biological
methanation are scarce due to the low temperature level (<70 �C),
which yields few potential uses. In contrast, the cooling of the
reactor causes an additional energy demand.

The higher temperature level (at least 300 �C) of the catalytic
methanation yields more opportunities for integration/utilisation
of the waste heat streams. Respectively, highly valuable steam and
power could be produced [68] (for details see Section 5.2).

4.3. Conclusion

For the following reasons, the biological methanation is only an
option for small plant sizes:

� Low temperature can simplify the process, however, few pos-
sibilities to use the waste heat

� Large specific reactor volumes required
� Simplified gas cleaning because of high tolerance of impurities

Isothermal catalytic methanation concepts (e. g. three-phase
methanation, fluidized-bed reactors) seem to be best for average
plant sizes. The process setup is relatively simple and the waste
heat can be used.

The fixed-bed methanation is well suited for large scale
methanation plants (>100 MW). The process setup is relatively
complex [58], but highly valuable steam can be produced [68].

5. System analysis

5.1. Carbon sources

Power-to-Gas requires a carbon source such as CO or CO2. There
are already several articles on CO2 sources from the CCS (Carbon
Dioxide Capture and Storage) technology available [128e130]. In
contrast to PtG, CCS requires large stationary point sources of CO2
such as power plants and refineries as well as the iron, steel, and
cement industries to have an impact on the climate [129].

CO2 sources from industry (Table 6) are one of the largest sta-
tionary CO2 sources in the world [128]. However, CO2 from iron and
steel industries as well as from the cement industrywould require a
CO2 capture and some upgrading in order to remove methanation
poisoning trace components such as sulphur.

The removal of CO2 from these gases reduces the energy effi-
ciency and increases the costs significantly. In contrast, PtG requires
much smaller carbon sources. As evident in Table 7, even biogas
plants, which are relatively small carbon sources, can help to store
severalMWof chemical energy via the PtG process chain. The use of
all the CO2 emitted from a power plant would require huge elec-
trolysers. Power plants and other carbon sources with low CO2
contents will not be discussed in the following section because of
the large availability of CO2 sources which are better suited for the
PtG process. Furthermore, CO2 sources will not be discussed if the
direct addition of H2 to the process avoids the CO2 emission (e. g.
ammonia synthesis [131] and hydrogen production for refineries
via steam reforming).

5.1.1. Biogas
Biogas is an often discussed CO2 source. The main components

of biogas are CH4 (50e70 %) and CO2 (30e50 %), while H2S, mer-
captans, and siloxanes are trace components [119,132].

After removing the trace components, biogas (what is usually
used for power generation) can be directly injected to the metha-
nation reactor. Alternatively, the CO2 from biogas upgrading plants
(“biomethane plants”) can be used. The main advantages of biogas



Table 6
Properties of different industrial large scale carbon sources [128].

CO2 source Average emissions per source (Mt/a) CO2 concentration in the flue gas (vol% dry)

Iron and steel 3.5 20e27
Cement 0.79 14e33
Hydrogen (e. g. for refineries) e 15e20

Table 7
Typical volumetric flows and required power for electrolysis of different carbon sources.

CO2 source Biogas plant Biomass gasification Industrial processes power plant

Typical feed gas in m3/h (STP), dry CO2 500 2100 30,000 300,000
CO e 2500 e e

H2 e 4000 e e

CH4 500 1100 e e

Additional H2 from electrolysis in m3/h 2000 11,900 120,000 1,200,000
Power demand for electrolysis in MW (5 kWh/m3 H2) 10 59.5 600 6000
Produced CH4 (total) in m3/h 1000 5700 30,000 300,000
Produced CH4 (total) in MW 11 63 332 3320
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as part of the PtG chain include low gas cleaning expenses and the
possibility to utilise the heat from methanation and the oxygen
from the electrolysis (see Section 5.2) [133,134].

Particularly in Germany [131,135,136], but also in some other
countries there is already a significant potential of CO2 from biogas
plants. According to the European biogas association [137], 1.3
109 m3 of biomethane were produced in 2013. Assuming a CO2
content of 45% in the biogas, approximately 12 TWh/a of chemical
energy could be stored in the form of methane. Moreover, there are
almost 15,000 biogas plants in Europe which do not inject into the
gas grid (from Refs. [137], primary source: European Biogas
Association).

China [138e140] and the USA [141] also have numerous biogas
plants. However, so far there is little interest in PtG in these two
countries.

5.1.2. Biomass gasification
In the future, a Biomass-to-Gas (BtG) process combined with

PtG could play an important role. This combination was already
proposed by Gassner andMar�echal in 2008 [142]. The integration of
hydrogen from surplus electricity into BtG offers many benefits
[28,91,142,143]:

� Total carbon exploitation can be more than doubled (Fig. 10)
� Higher overall process efficiency
� O2 from electrolysis can be used for gasification
� By adding hydrogen from electrolysis, the use of the water-gas
shift reaction can be avoided

Furthermore, a large H2 storage can be avoided. In timeswithout
the availability of surplus electricity, the methanation can be
operated with synthesis gas only. This significantly increases the
full load hours of the methanation reactor.

Since only a few biomass gasification plants exist, this process
chain is not yet a feasible carbon source in most countries.

5.1.3. (Additional) high-purity CO2 sources
Several processes in industry and fuel production yield rela-

tively pure CO2 streams. However, some of these sources depend on
fossil fuels. Some examples of pure CO2 sources include natural gas
processing, coal-to-gas and coal-to-liquids, ethanol production, and
ethylene oxide production [129,144,145]. According to [146], there
were 14 ethylene oxide plants in Europe in 2003. Furthermore,
some industrial complexes have relatively pure CO2 streams.
However, the availability of such pure CO2 sources is very country-
specific.

5.2. Efficiency and system integration

To assess the PtG process efficiency, the following system is
examined. Current available electrolysis technologies (AEL and
PEM) delivering H2 at 25 bar with an electrical efficiency of 70% are
considered. The methanation reactor is operated at 20 bar with an
efficiency of 78% (maximum chemical efficiency). CO2 is already
compressed to 20 bar for the methanation reaction (otherwise 2%
efficiency loss). The Sankey diagram of this considered system is
shown in Fig. 11.

The Sankey diagram shows two improvement potentials for PtG.
First, the efficiency of water electrolysis could be improved (see
section 2.2). Also, heat from the methanation reactor could be
utilised.

High temperature heat is produced during catalytic methana-
tion. 165.1 or 206.3 kJ is produced during the methanation of 1 mol
of CO2 or CO, respectively (see Eq. (6) and Eq. (7)). In addition to the
heat of reaction, the methanation gas with a temperature level of
300e700 �C (depending on the reactor concept) has to be cooled
down prior to injection into the gas grid. Both of these energy
sources can be utilised to improve the PtG process efficiency.

Heat frommethanation can be utilised to improve the efficiency
of the implemented CO2 source system [68,133,143,147]. The
methanation waste heat can also be used to produce steam for
further use in a steam power cycle [148]. If a SOEC is implemented
for H2 production, the produced steam can be used as reactant for
the electrolysis process [42,43].

Low temperature heat (T < 100 �C) from the electrolyser or
methanation reactor (in particular for biological methanation) is
more difficult to valorise. One option is to use this heat for district
heating if the PtG facility is near inhabited areas [149].

From water electrolysis, 8 kg of O2 are produced per kg of H2

(2m3 O2 perm3 CH4 for CO2methanation). So far, no O2 valorisation
has been implemented in the installed PtG facilities [28]. However,
several options for O2 valorisation exist [150]:

� Blast furnaces and electric arc furnaces in the steel industry
� Glass melting
� Oxycombustion in power plants
� Gasification processes
� Medical care



Fig. 10. Increase in CH4-production for Biomass-to-Gas by integrating H2 from wind and sun power.
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Fig. 11. Sankey diagram of the PtG process efficiency (heat integration is not taken into account).
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Another option consists of the utilisation of O2 for primary
desulphurisation of biogas [127,133].

O2 is usually transported in its liquid form. Since O2 liquefaction
would represent an additional cost for the PtG facility, it is foreseen
that O2 would be directly utilised at the electrolyser site [49].
Another issue to consider with O2 valorisation is the intermittency
of the electrolyser: O2 will only be produced when the electrolyser
is in operation.

5.3. Economics of “Power-to-Gas”

A couple of papers and studies deal with the overall role of PtG
in the future energy system. In particular, the German energy
transition (Energiewende) is examined extensively [12,151e153].
Besides the overall storage demand, overall costs, climate relevant
issues, and integral and spatial PtG capacities in accordance with
the expected shares of volatile renewable energy sources are
evaluated. In this context, combinations of different storage tech-
nologies are also considered. For instance, Power-to-Heat and
Power-to-Gas can be both relevant in a scenario with 85% renew-
ables in the German electricity production [6]. In Refs. [28,154,155],
the evaluation of various business models, market integration, and
impact of different PtG applications is considered in detail.
Depending on the assumptions, the results of the studies can differ
significantly. In the following, the influence of the different as-
sumptions on the SNG costs will be discussed.

5.3.1. Capital expenditures (CAPEX)
The following process steps have to be considered:
� Electrolysis
� Hydrogen storage and hydrogen compression (optional)
� Methanation

5.3.1.1. Electrolysis vs. catalytic methanation. The most significant
contributor to the total CAPEX is the electrolysis ([28,33,
115,127,148,149] and Table 8). However, the reported investment
differs significantly. The investment for the electrolysis was already
discussed in Section 2.2 and it is in the range of approximately
800e3000 V/kW (el.). Less literature is available about
methanation investment. Outotec GmbH [28] reported investment
costs of 400 V/kW SNG for a 5 MW plant and 130 V/kW SNG for a
110 MW plant (both data sets are for 2014 and 20 bar operating
pressure). Gassner andMar�echal [156] investigated the Biomass-to-
Gas process chainwith a 14.8MWCOmethanation (15 bar) in 2009.
The investment costs for the methanation were 175 V/kW SNG
which is in agreement with data from Outotec GmbH.

Lehner et al. [149] compared three different articles/reports
and identified a range of 300e500 V/kW. Ausfelder et al. [157]
assume investment costs of 600 V/kW in 2050. Methanation
costs of 1500 V/kW (currently) e 500 V/kW (2030) are given by
E&E Consultant [49]. Finally, Ueckerdt et al. [153] assume 1000
V/kW SNG.

In conclusion, there is a strong uncertainty regarding the
methanation investment costs. The data from Outotec GmbH
seem to be most realistic because they are based on size-specific
calculations from a plant engineering company. That would
mean that most other studies use overestimated methanation
costs.



Table 8
Investment for different parts of a Power-to-Gas plant (36 MW electrolysis, pressure in H2 storage: 30e200 bar, methanation pressure: 20 bar) [127].

Investment in MV Electrolysis Compressor H2 storage Methanation Total

Case 1 28.8 1 8.3 0.7 38.8
Case 2 28.8 1 4.8 1.2 35.8
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5.3.1.2. Hydrogen storage. Usually, the electrolysis can be operated
more dynamically than the methanation reactor. As a consequence,
hydrogen storage is necessary. A less dynamic methanation results
in larger hydrogen storage. Furthermore, smaller hydrogen storage
requires a larger methanation plant. Aicher et al. [127] investigated
the influence of methanation dynamics on hydrogen storage in-
vestment (see Table 8). Awind farm in northern Germany was used
as power source with an installed electrolysis capacity of 36 MW
(el.). The following two cases are compared in Table 8:

� Case 1: The methanation operates in steady state mode and
produces 311 m3/h CH4. The required hydrogen storage volume
is 1700 m3.

� Case 2: The methanation can be operated within a load range of
40e100 %. The total capacity of the methanation is 591 m3/h
CH4; however, the annual methane production is similar to case
1. The hydrogen storage has a volume of 850 m3.

As seen in Table 8, the hydrogen storage is the second most
significant contributor to the investment of a PtG plant. In this
example, the total investment of the PtG chain can be reduced by
8% by operating the methanation dynamically compared with a
steady state operation (although the investment for the methana-
tion increases).

5.3.2. Operational expenditures (OPEX) and resulting SNG costs
Important aspects influencing the OPEX are the electricity price

and potential CO2 costs as well as a possible heat and oxygen
utilisation.

5.3.2.1. Utilisation of heat and oxygen as well as CO2 costs. As
described in Section 5.2, heat and oxygen can be used in other
processes (e. g. biogas plant). Using oxygen from electrolysis for
primary biogas desulphurisation, approximately 32,000 V/a can
be expected for a 1000 m3/h biogas plant [127]. Vandewalle et al.
[155] investigated the effect of two different oxygen prices (10 and
70 V/t O2) on the SNG costs assuming that all of the oxygen pro-
duced can be sold. In this case, oxygen utilisation could reduce the
SNG costs by approximately 2 ct/kWh (5000 h/a operation). In
Refs. [28], a reduction of the SNG costs by 1.3 ct/kWh is reported
for O2 utilization. The authors also report a small effect of heat
utilization on the SNG costs. Similar results are reported in
Ref. [49].

Little information is available on CO2 costs. Usually, CO2 is
regarded as being freely available [49]. However, CO2 costs of 100
V/t CO2 could increase the SNG price by 2 ct/kWh SNG [157].

5.3.2.2. Biological vs. catalytic methanation. Furthermore, it is of
interest to compare the costs for biological methanation with cat-
alytic methanation. According to [28,115], for a small plant size
(5MW) the production costs for biological methanation are slightly
higher than for catalytic methanation. For larger plant sizes
(110 MW), the methanation production costs for biological
methanation are nearly 2.5 times that of catalytic methanation. In
contrast, higher costs for catalytic methanation compared with
biological methanation are reported from E&E Consultant [49],
however, it was shown above that the catalytic methanation costs
assumed by E&E Consultant are probably too high.
5.3.2.3. Generation costs for SNG (all data in Eurocent/kWh SNG).
In Refs. [28], the SNG costs are investigated. Some of the results are
shown in Fig. 12. The coupling with a biomethane plant (5 MWSNG
generation capacity), with a biomass gasification (30 MW SNG
generation capacity), and with an ammonia plant (110 MW SNG
generation capacity) is illustrated for different annual operation
times. An increase in full load hours (FLH) from 1200 to 3000 FLH
decreases the SNG costs by about 50%. A further increase has less of
an effect on the SNG costs.

Buchholz et al. [148] accomplished a PtG design study with CO2
from a lignite power plant. The annual operation time was esti-
mated at between 800 and 1200 h/a. With SNG generation costs of
about 60e90 ct/kWh, the produced SNG is much more expensive
than natural gas. Nevertheless, the authors see economic benefits
in the increased flexibility in operating of the lignite power plant.

A study from E&E Consultant [49] reports SNG costs from 16.5 to
39.2 ct/kWh for today and 7.2e10.2 ct/kWh for 2050 including heat
and O2 utilisation.

In Refs. [158], different options for renewable transportation are
compared. Besides direct usage of electricity, numerous energy
storage concepts such as DME, methanol, and methane production
were analysed. The derived production costs of methane, methanol,
and DME were comparable in a range of 6 (2050) to 8 (2020) ct/
kWh for 5000 FLH per year.

Summarising, the generation costs for H2 and for SNG strongly
depend on the annual operational time and the electricity price.
Compared with natural gas (approximately 2e3 ct/kWh), the costs
are much higher (Table 9). For economic feasibility, relevant annual
operational times and low electricity costs are obligatory
[28,33,34,155]. However, these aspects are contradictory. For low
full load hours, the CAPEX for the electrolysis is dominant, for larger
full load hours, the electricity price is the most important param-
eter influencing the economics.

5.3.3. Conclusion
The microeconomic evaluation shows that SNG from PtG pro-

cesses is not competitive with natural gas or even biomethane
(z7 ct/kWh). For economic feasibility, different business cases such
as mobility, balancing services, and CO2 certificates have to be
combined [28]. With respect to a macroeconomic consideration, it
has to be taken into account that PtG can contribute to minimise
the expansion of the electricity grid infrastructure [160] and to
increase the share of renewable energy in the transport and the
heating sectors. Therefore, PtG can play a major role in the real-
isation of the ambitious transition of the energy system.

5.4. Demonstration plants

An overview of Power-to-Gas demonstration plants is already
available in literature [26,28,34]. Therefore, only some of the most
important demonstration plants and projects aiming to produce
SNG are described in this section.

The first PtG pilot plant was probably that which was built in
Japan at the Tohoku Institute of Technology in 2003. The plant is
relatively small, producing 1 m3/h methane (electrical power at
electrolyser < 10 kW). Seawater is used for electrolysis [8].

The Audi e-gas plant in Wertle, Germany is the biggest Power-
to-Gas plant worldwide. Hydrogen is produced from three alkaline



Fig. 12. SNG generation costs for the coupling of PtG with different CO2 sources (electricity price 5 ct/kWh, heat price ¼ 4 ct/kWh, oxygen price ¼ 7 ct/m3) [28].

Table 9
Overview of SNG generation costs produced via PtG (inmost cases, the original papers showmore data than given here; in this case, data for 1200 and 3000 FLHwere chosen to
compare the calculations).

Source FLH Assumptions Year SNG costs in Eurocent/kWh SNG

Buchholz et al. [148] 1200 1200 FLH
80 MW electrical power input
Energy integration with lignite power plant

2012 60

Müller-Syring et al. [33] 0e9 ct/kWh electricity 2013 19e50
Schaaf et al. [28] 5 ct/kWh electricity

110 MW SNG output
2014 27e30

Vandewalle et al. [155] 0e5 ct/kWh electricity
10 V/t O2

2015 10e16

Schaaf et al. [28] 3000 5 ct/kWh electricity
110 MW SNG output

2014 13.5e17

Brunner et al. [159] 0e3.3 ct/kWh electricity 2014 6.3e21
Vandewalle et al. [155] 0e5 ct/kWh electricity

10 V/t O2

2015 4e8

E&E Consultant [49] e Heat and O2 utilisation 2014 16.5e39.2
E&E Consultant [49] Heat and O2 utilisation 2050 7.2e10.2
Aufelder et al. [157] 6 ct/kWh electricity

Installed electrolysis power: 60 GW
2050 21.8
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electrolysers with a total electrical power of 6 MW [161]. The CO2 is
provided by a biogas plant [162]. Operation began in 2013. Cooled,
fixed-bed methanation reactors are used.

The combination of Power-to-Gas with biomass gasification is
demonstrated in the KIC-Project „DemoSNG“ [91]. The volumetric
feed gas flow for the methanation is 10 m3/h (STP) and the plant is
currently under commissioning (as of June 2015). A novel metha-
nation concept based on a honeycomb reactor is used.

The BioCatProject aims to use the biological methanation
developed by Electrochaea as part of the Power-to-Gas process
chain. An alkaline electrolyser with an electrical power input of
1 MW will provide the hydrogen. The plant, which is located in
Denmark, is currently under construction [163].

6. Summary

Power-to-Gas (PtG) might play an important role in the future
energy system. However, technical and economic barriers have to
be solved before PtG can be commercially successful.

Electrolysis:

� Improvement in efficiency (during transient operation) and cost
reduction are required
� Currently, alkaline electrolysis is the cheapest and most reliable
technology

� In the near future, PEM electrolysis could be the better choice for
PtG plants because of the better performance with respect to
transient operation

� Solid oxide electrolysis is in the development phase, however,
the technology has a high potential for coupling with
exothermic reactions at steady-state operation

Catalytic methanation:

� Almost 30 groups working on methanation technologies
(mostly fixed-bed and structured reactors; additionally
fluidized-bed reactors and three-phase methanation)

� Few results are published about the dynamic operation of
methanation reactors

� Recent results indicate that the dynamic operation is not
significantly reducing the catalyst stability

� The control of the reactor temperature of adiabatic reactors is
difficult; consequently cooled fixed-bed reactors are under
investigation to handle the above mentioned issue

� The application of three-phase reactors leads to isothermal
conditions during dynamic operation
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Biological methanation:

� Biological methanation can be carried out in biogas digesters
(addition of H2 to biogas digesters) or in separate reactors

� The poor H2 mass transfer is the limiting aspect regarding the
process performance

� Mostly CSTR reactors are used which have the advantage of a
high volumetric mass transfer coefficient kLa, however, the
backmixing in the gas and liquid phase makes it difficult to
achieve high methane contents

Comparison of biological and catalytic methanation:

� Biological methanation has a higher tolerance of impurities
� Catalytic methanation requires much smaller reactor sizes for
the same feed gas flow (orders of magnitude smaller)

� Use of catalytic methanation leads to higher efficiencies because
(I) no stirrer is required and (II) the waste heat can be utilised

Process chain:

� Biogas and biomass gasification could become important CO2
sources for PtG

� The hydrogen production costs dominate the whole process
costs

� Hydrogen storage can be another significant cost factor
� The dynamic behaviour of the methanation determines the size
of the H2 storage

� Heat utilisation from methanation is required to increase the
PtG efficiency
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Symbols and abbreviations
Abbreviations and indices
* Equilibrium
0 Standard conditions
3PM Three-phase methanation
AEL Alkaline electrolysis
BM Biological methanation
BtG Biomass-to-Gas
CAPEX Capital expenditures
CCS Carbon Dioxide Capture and Storage
CSTR Continuous Stirred-Tank Reactor
DME Dimethyl ether
DVGW Deutscher Verein des Gas-und Wasserfaches
eff Effective
el. Electrical
FLH Full load hours
G Gas phase
GDF Gaz de France
i Component i
in Inlet
KIT Karlsruhe Institute of Technology
L Liquid
MT Mass Transfer
OPEX Operational expenditures
out Outlet
PFR Plug Flow Reactor
PEM Polymer electrolyte membrane
PtG Power-to-Gas
PtL Power-to-Liquid
PV Photovoltaics
R Reactor
S Solid
SNG Substitute Natural Gas
SOEC Solid Oxide Electrolysis
STP Standard Temperature and Pressure: 0 �C, 101,325 Pa
TU Technische Universit€at
ZSW Zentrum für Sonnenenergie-und Wasserstoff-Forschung

Baden-Württemberg

Symbols
c Concentration (mol/m3)
EV Equilibrium cell voltage (V)
F Faraday constant (96,485 C/mol)
Fn Molar stream (mol/h)
FV Volumetric stream (STP) (m3/h)
GHSV Gas Hourly Space Velocity (Eq. (5)) (h�1)
DG0

r Standard Gibbs free energy (kJ/mol)
Hi,L Mass based Henry's law coefficient

�
pi$
�

ni
miþmL

��1�
(bar kg/mol)

HS Higher heating value (kWh/m3)
VHi;L Volume based Henry's law coefficient

�
pi$
�

ni
ViþVL

��1�
(bar l/mol)

DH0
r Standard enthalpy of reaction (kJ/mol)

kLa Volumetric mass transfer coefficient (s�1)
MFR Methane Formation Rate (Eq. (10)) (h�1)
m Mass (kg)
n Number of moles, number of transferred electrons (mol, -)
p Pressure (bar)
ri,eff Effective reaction rate

�
1
VR

dni
dt

�
(mol s�1 m�3)

T Temperature (K, �C)
V Volume (m3)
Xi Conversion of component i (-)
yi Mole fraction (gas phase) (-)
r Density (kg/m3)
tmod,CO2 Modified residence time (mass of catalyst divided by the

molar stream of CO2) (kg$ s/mol)

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://
dx.doi.org/10.1016/j.renene.2015.07.066.
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