Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield

Andreas Lemmer a, Wolfgang Merkle a,*, Katharina Baer b, Frank Graf b

a University of Hohenheim, State Institute of Agricultural Engineering and Bioenergy, Garbenstraße 9, 70599 Stuttgart, Germany
b DVGW - Research Center at the Engler-Bunte-Institute, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany

A R T I C L E I N F O
Article history:
Received 31 October 2016
Received in revised form 1 June 2017
Accepted 13 July 2017
Available online 18 July 2017

Keywords:
Anaerobic digestion
Biogas
High pressure
Two stage
Gompertz equation
pH-value

A B S T R A C T
The production of biogas for combined heat and power generation represents a common method in Germany. An alternative is the purification of biogas to biomethane and injection into the natural gas grid to decouple gas production from usage in terms of space and time. The concept of pressurized two-stage anaerobic digestion integrates biogas production, upgrading and pressure boosting within one process. The increasing solubility of CO₂ in process liquid at high pressures results in high methane contents in gaseous phase and in drop of pH. To investigate the effects of high initial pressures (10, 20, 30 bar) and dissolved CO₂ on pH-value, production kinetics and specific methane yields, pressurized batch methane reactors were built up. Additionally, a method for indirect measuring of pH-value was determined. The results of the experiment showed a decrease in pH from 7 to 6.31 (10 bar) and 6.25 (30 bar). Furthermore, neither a significant influence of initial pressures on the pressure increase nor on the degradation of organics and the specific methane yields was observed. However, the results show that anaerobic digestion at high pressures up to 30 bar might be a promising alternative to post purification and pressure boosting applications.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction
Biogas, as a carbon dioxide (CO₂) neutral energy source, is produced by anaerobic digestion of biodegradable substrates. In industrial biogas plants in Germany, the produced biogas has a methane (CH₄) content of 55%–60% depending on the initial substrates [1] and is commonly used for combined heat and power generation. Due to the high content of CO₂ in the raw gas, the usage possibilities of biogas are limited to the low calorific value. For further applications, the CO₂ content of biogas has to be reduced significantly. After upgrading the raw biogas by commonly used technologies such as amine and pressure water scrubbing, pressure swing adsorption (PSA) or gas separation membranes [1] followed by cost-intensive compression [2]. This gas can be fed into the natural gas grid if the relevant injection regulations are fulfilled: In Germany, these regulations are mainly determined by the technical guidelines G 260 and G 261 issued by the Deutscher Verein des Gas- und Wasserfaches e. V. (DVGW) [3,4]. Alternatively, the purified biogas can be used as fuel for vehicles [5]. The high energy demand of the upgrading units [6] may prevent further expansion of these technologies due to economic reasons.

Biogas stations are normally run nearly under ambient pressure. Due to typically used low-pressure gas storage systems, the maximum operating pressure of biogas stations is 10 mbar above the local atmospheric pressure. Also the microorganisms in anaerobic digestion, which are introduced into the system by added liquid or solid manure, sewage sludge or wastewater treatment sludge, are normally adapted only to ambient pressure. These microorganisms involved in the anaerobic digestion (AD) process can be subdivided into three groups of which the first two are primary and secondary fermenting bacteria. In the last step of AD, methanogenic Archaeabacteria, which are present on earth since approximately 3.8–4.1 billion years [7], are forming methane, carbon dioxide and water. These methanogenic microorganisms can also be found in a diversity of extreme habitats like marine sediments, digestive and intestinal tracts of animals, as well as in geothermal springs and both shallow and deep-sea hydrothermal vents [8]. In contrast to piezosensitive strains, most of them are piezotolerant or even piezophilic strains, which means that they are able to grow under high pressures or reach their optimal growth rates at pressures considerably above atmospheric pressure [9].
Examples of such piezophilic microorganisms (bacteria and archaea) were isolated in deep ocean waters at pressures of 100 bar to 1030 bar [10]. Other studies from Bernhardt et al., 1988 mentioned enhancing growth rates of Methanococcus thermolitho- trophicus at high pressures up to 500 bar [11].

This pressure tolerance of methanogenic microorganisms provides the theoretical background for high pressure anaerobic digestion. In pressurized AD, the operating pressure inside the methane reactor is autogeneratively raised by microbial biogas production. In this process, the reactor's gas outlet is opened only if the aimed operating pressure is achieved. By running an AD process under high operating pressures, the formed CO2 is partially dissolved in the liquid digestate and can be removed by the effluent from the reactor. Due to the higher solubility of CO2 compared to methane (CH4) [12–14], the CH4 content in the gaseous phase can be increased. Previous research in two-stage high-pressure anaerobic digestion show that CH4 contents of up to 87% at 5.9 bar in continuous operation and 95% at pressures up to 90 bar in batch tests can be achieved [15,16]. By the integration of biogas production, purification and pressure boosting within this novel process, the cost for the post-production biogas upgrading and pressure adjustment for grid injection can be substantially reduced.

Nevertheless, pressurized AD is a challenging process. The increased CO2 partial pressures in high-pressure digestion systems are leading to an augmented formation of hydrogen carbonate, thus dropping the pH-value in the reactor. Previous studies from Chen et al., 2014 on continuous pressurized two stage anaerobic digestion showed a significant drop of the pH-value from 7.2 to 6.5 by raising the pressure from 1 to 9 bar, without any additional pH-adjustment [17]. Lie et al., 2008 mentioned an optimal range of pH in anaerobic digestion of 6.5–7.5, depending on substrate and digestion technique [18]. At even higher operating pressures, higher partial pressures of CO2 and lower pH-values are assumed. Therefore, the pH monitoring plays an essential role in high-pressure digestion systems.

For pH measuring, standard pH sensors with glass electrodes and gel-filled reference electrolytes are available for pressures up to 10–16 bar. At higher pressures, special adapted pH sensors [19–21] are needed which are more expensive. Although for further full-scale applications, the significance of pH measuring at one certain point is limited. For that reason, an indirect method for the prediction of pH-value under different working conditions is of great interest. This method, described in a study from Lemmer et al., 2015 considers the ion concentration in the liquid and estimates the dissolved CO2 by its solubility considering all relevant environmental conditions in the reactor [15].

In this study the effect of high operating pressures up to 30 bar in AD systems on the pH-value in the digestate and its subsequent influence on the produced biogas quantity and quality were examined. Therefore, lab-scale batch experiments were performed at the State Institute of Agricultural Engineering and Bioenergy (University of Hohenheim). Additionally, the influence of different operation pressures on the substrate's pH-value and the method for indirect measuring of pH-value was determined by the DVGW Research Centre at the Engler-Bunte-Institute of Karlsruhe Institute of technology (KIT).

2. Material and methods

2.1. Reactors

The used AD system consists of three high-pressure batch reactors (BR-500, Berghof, Eningen, Germany) with a volume 0.64 L each, shown in Fig. 1. For temperature control the reactors were heated in a water bath by a thermostat (ED, Julabo, Seelbach, Germany). Each reactor was equipped with one valve (V1) for gas inlet and a double-valve system (V2, V4) for the gas outlet. Furthermore, liquid samples were taken by a double-valve system with an immersion tube (V3, V5). Parameters such as pressure (DMU 01, Error ± 1% FSO, Afriso, Gueglingen, Germany) and temperature (PT100, Berghof, Eningen, Germany) were measured in each reactor. pH-values were measured by high pressure pH sensors (Polilyte Plus XP VP 120, Hamilton, Reno, USA), which had a pressure range between 0 and 50 bar at temperatures up to 60 °C. For measuring the temperature of the water bath a TMR31 was used (Endress + Hauser, Error ± 0.15 K, Weil am Rhein, Germany). The air pressure (ALD-I, Error ± 1.5% of final value, S + S Regeltechnik, Nuernberg, Germany) and air temperature (KFTF-35, Error ± 0.5 K, S + S Regeltechnik, Nuernberg, Germany) were logged during the measurements.

2.2. Experimental procedure

At the beginning, each reactor was filled with a mixture (0.55 L, pH 7.1 under ambient pressure) made of hydrolysate from leach-bed-reactors and effluent from an anaerobic filter, both run under atmospheric conditions. The hydrolysate of the mixture was produced in four acidogenic-leach-bed-reactors with a volume of 50 L.

![Fig. 1. Piping and instrumentation diagram of the high-pressure batch anaerobic digestion system.](image-url)
2.3. Analytical methods and data acquisition

In this study, pressure, temperature and pH-value of each reactor was monitored and logged via LabView (National Instruments, Austin, USA). For data acquisition a CompactDAQ controller (National Instruments, Austin, USA) was used. The composition of the produced gas was measured under atmospheric pressure at the end of each run (MicroGC 3000, Inficon, Bad Ragaz, Switzerland) and the quantity by a 100 ml high pressure syringe (SYR H-CX, ILS, Stuetzerbach, Germany). The reactor liquid was analyzed according to the German technical literature), total inorganic carbon/alkalinity (TIC) and from 5 to 4.4 (VFA). The TIC-value remained dissolved in the liquid under atmospheric pressure. The solubility can be described by Henry's law.

2.4. Theory/Calculation

2.4.1. pH-value

The pH-value was calculated using the charge balance between cations c and anions a.

\[\sum_{c} n_{c} z_{c} = \sum_{a} n_{a} z_{a} \]

Mainly existing ions in the pressurized methane reactor are protons (H\(^{+}\)), carbonic acid (HCO\(_{3}^{-}\)), carbonate (CO\(_{3}^{2-}\)), volatile fatty acids, hydroxide ion (OH\(^{-}\)) and ammonia (NH\(_{4}^{+}\)). Other alkaline substances (all cations like calcium, magnesium, potassium, sodium, alcohols) in the methane reactor were measured once and estimated to be the same like Chen et al., 2014 mentioned approximately 0.115 mol L\(^{-1}\). The value was validated from the data of a previous research study from Chen et al., 2014 [17].

\[\bar{m}_{\text{HCO}_3^{-}} + 2 \bar{m}_{\text{CO}_2} + \bar{m}_{\text{NH}_4^+} = \bar{m}_{\text{H}^+} + \bar{m}_{\text{OH}^{-}} + \bar{m}_{\text{Base}} \]

\[\text{pH} = -\log(a_{H^+}) = -\log \left(\frac{\bar{m}_{\text{H}^+} \cdot \gamma_{H^+}}{\bar{m}_{H^+}} \right) \]

Every term is affected by the concentration of H\(^{+}\)-ions and can be described by the acid dissociation constant K\(_{a}\) as follows:

\[\text{HA} \leftrightarrow \text{H}^+ + \text{A}^- \]

\[K_{a} = \frac{\bar{A} \cdot \bar{H}^{+} \cdot \gamma_{A}^{-} \cdot \gamma_{H^{+}}}{\gamma_{HA}} \]

In the definition of the acid dissociation constant K\(_{a}\), HA is the acid, A\(^{-}\) its conjugated base in water and \(\gamma \) the respective activity coefficient. All acids measured with a capillary column gas chromatography or HPLC were standardized to acetic acid and named with “HAc”. Also self-ionization of water was taken into account to calculate \(\bar{m}_{\text{OH}^-} \). Equation (2) can be solved for \(\bar{m}_{\text{H}^+} \) and the pH-value can be calculated by Equation (3).

Another contrary approach was based on sum parameters like VFA (FOS in the German technical literature) by titration (Equation (6)), where H\(_{2}\)SO\(_{4}\) consumption was measured up to pH-value of 5 (TIC) and from 5 to 4.4 (VFA). The TIC-value reflects the buffer capacity of the carbonate buffer system and was given in mg CaCO\(_{3}\)/L [23–25].

The dissolved amount of CO\(_{2}\) could be either calculated or measured. Most methods and analyzers degas the liquid and measure the volume of the gas. However, fermentation liquid has a high buffer capacity and depending on the pH-value, most CO\(_{2}\) remains dissolved in the liquid under atmospheric pressure. The TIC value is a parameter for the dissolved CO\(_{2}\) and several forms of carbonate in the liquid. In a determination with titration, it appears to be appropriate to use TIC as “total alkalinity of carbonates” [24].

\[m_{\text{TIC}} + m_{\text{HS}} + m_{\text{FA}} + m_{\text{OH}^-} = m_{\text{H}^+} + m_{\text{TN}} + m_{\text{Base}} \]

Acetic acid standardization:

\[m_{\text{TIC}} + m_{\text{HS}} + m_{\text{HAc}} + m_{\text{OH}^-} = m_{\text{H}^+} + m_{\text{TN}} + m_{\text{Base}} \]

The dissolved CO\(_{2}\) couldn’t be easily detected with HPLC, so that Equation (8) represents the standard liquid analysis results without taking the dissolved CO\(_{2}\) into account.

\[m_{\text{HS}} + m_{\text{HAc}} + m_{\text{OH}^-} = m_{\text{H}^+} + m_{\text{TN}} + m_{\text{Base}} \]

pH-value can be calculated with Equation (3) and with dissociation constant of ammonia, hydroxide ion that was described by Chen et al., 2014 and Lemmer et al., 2015 [15,17]. Equations (6)–(8) can be solved. As described above, dissolved amount of CO\(_{2}\) can be detected via titration at atmospheric pressure. Under reaction conditions, highly pH sensitive CO\(_{2}\) and its ions needs to be considered.

At the DVGW-EBI the effect of components in the fermentation liquid on the solubility of methane and carbon dioxide was investigated. The solubility can be described by Henry’s law.
\begin{equation}
H_{\text{lm}} = \lim_{x_i \to x_i^{\text{lm}}} \frac{p_{\text{f}}}{x_i^{\text{lm}}}
\end{equation}

where, \(x_i\) represents the mole fraction of gas \(i\) in the solvent \(lm\) and its partial pressure \(p_{\text{f}}\). Henry’s law only considers the physical dissolved gases but according to the pH-value carboxic acid reaction with water cannot be ignored [26]. This leads to an apparent Henry coefficient with a temperature dependent Henry correlation [27]. pH-value, the activity coefficient \(\gamma_0\) and the equilibrium coefficient \(K_{\text{CO}_2}\) for the first and with the additional second dissociation reaction.

\begin{equation}
H'_{\text{CO}_2,\text{exp}}(T, pH) = H_{\text{CO}_2,\text{H}_2O(T)} \cdot \frac{\gamma_0}{\gamma_{+/-}} \left[1 + \frac{K_{\text{CO}_2,1}}{10^{-pH}} \frac{1}{\gamma_{+/-}} + \frac{K_{\text{CO}_2,2}}{10^{-pH}} \frac{1}{\gamma_{+/-}^2}\right]^{-1}
\end{equation}

Due to the fact that with increasing salt concentration, gas solubility often decreases, this “salting-out” effect was considered in Equation (10) with \(\gamma_0\) and can be described with the Sechenov relation and model parameters measured by Weisenberger et al. [28]. Activity coefficient for ions \(\gamma_{+/-}\) was calculated with Pitzer-Debye-Hückel [29]. The temperature dependency for \(\text{CO}_2\) \((H_{\text{CO}_2,\text{H}_2O(T)})\) can be described with the Peng-Robinson equation [27] and for \(\text{CH}_4\) with Jaeschke et al. [32]. Results of solubility measurements and comparison with solubility calculations as described in Equation (10) are published [15, 17, 22, 26, 30].

2.4.2. Production kinetics

For the experiments the ideal gas equation partial has to be adapted to the behavior of real gases. The compressibility of the gas cannot be disregarded as experiments run at pressures of up to 30 bar.

\begin{equation}
p_{\text{f}} V = Z_{\text{f}} n_{\text{f}} R T
\end{equation}

In Equation (11), the ideal gas law where \(p_{\text{f}}\) is the partial pressure of gas \(i\) (bar), \(V\) as volume (L), \(n_{\text{f}}\) the amount of substance \(i\) (mol), \(R\) as universal gas constant \((\text{J mol}^{-1} \text{K}^{-1})\) and \(T\) as temperature \((\text{K})\), is extended by the compressibility factor \(Z_{\text{f}}\). \(Z_{\text{f}}\) is calculated with the equations of SGerg-88 [31] for \(\text{CH}_4\) and Peng-Robinson [27] for \(\text{CO}_2\). At standard pressure and temperature \((\text{STP})\): \(p = 1.013\text{ bar}, T = 273.15\text{ K}\), \(Z = 1\) for any gas and decreases for both applied gases with rising pressure.

The pressure increase was calculated by the measured pressures in the reactors which are temperature corrected by using the ideal gas equation with a constant volume.

\begin{equation}
p_n = \frac{p_{\text{f}}(T_{\text{f}}) \cdot Z_{\text{f}}}{Z_{\text{f}} \cdot T_{\text{f}}} \times T_n
\end{equation}

where \(p_n\) is the temperature corrected pressure increase (bar \(g^{-1} \text{SCOD}\)), calculated by the difference between the quotient of the measured pressure \(p_{\text{f}}\) (bar) and temperature \(T_n\) (°C) and at the minimum pressure \(p_1\) and temperature \(T_1\) of the experiment divided by the SCOD added (g). The temperature variations of 37.7±0.1°C during the experiments are compensated by multiplying with the desired temperature \(T_{\text{f}}\) of 37°C. The compressibility factor \(Z\) could be neglected due to the fact that the initial pressure was adjusted with a high amount of \(N_2\) in comparison to \(\text{CH}_4\) and \(\text{CO}_2\).

The degradation kinetics are estimated by the cumulative pressure increase which was fitted to the modified Gompertz equation [32] by assuming that pressure increase is a function of bacterial growth.

\begin{equation}
M = P \times \exp \left\{ - \exp \left[\frac{R_m \times e}{p} (\lambda - t) + 1 \right] \right\}
\end{equation}

\(M\) is the cumulative pressure increase \((\text{bar g}^{-1} \text{SCOD})\), \(P\) as pressure increase potential \((\text{bar g}^{-1} \text{SCOD})\), \(R_m\) is maximum daily pressure increase rate \((\text{bar d}^{-1} \text{g}^{-1} \text{SCOD})\), \(t\) as duration of run \((\text{d})\) and \(\lambda\) as duration of the lag phase time \((\text{d})\). The constants \(P, R_m\) and \(\lambda\) are calculated by a non-linear regression. With the first derivative of Equation (3) the daily pressure increase rate over time was determined to find the point in time of maximum daily pressure increase rate \((t = t_{\text{max}})\). The Kruskal-Wallis test was used for statistical analyses performed by the statistical software R [33].

2.4.3. Specific methane yield

To calculate the amount of \(\text{CH}_4\) produced Equation (14) was used, incorporating the experimental pressure increase, temperature and reactor gas volume. The accumulated amount of mole methane \(n_{\text{gas,CH}_4}\) was calculated as follows, regarding the measured parameters pressure \(p_{\text{f}}\) (bar), gas quality \(y_{\text{CH}_4}\), temperature \(T\) (K), and the known gas volume above the liquid phase \(V_{\text{gas}}\) (L).

\begin{equation}
n_{\text{gas,CH}_4} = \frac{p_{\text{f}} \cdot y_{\text{CH}_4} \cdot V_{\text{gas}}}{T \cdot R \cdot Z_{\text{CH}_4}}
\end{equation}

The specific methane yield \((\text{SMY})\) \((\text{L kg}^{-1})\) was calculated by Equation (15) with the accumulated amount of mole methane in gas \(n_{\text{gas,CH}_4}\) (mol) after decompression at standard temperature \(T_{\text{STP}}\) (K) and pressure \(p_{\text{f}}\) related to the input of SCOD \((\text{g L}^{-1})\).

\begin{equation}
\text{SMY} = \frac{n_{\text{gas,CH}_4} \cdot R \cdot T_{\text{STP}}}{p_{\text{f}} \cdot \text{SCOD}_{\text{added}}}
\end{equation}

3. Results and discussion

3.1. Process stability

The compositions of initially added liquid feed mixture and the effluent at the end of the experiment after 35 days trial time are summarized in Table 1. All originally added alcohols and sugars as well as n-butyric acid and lactic acid are completely degraded and could not be detected in the effluent anymore. In contrast, a slight accumulation of iso- and n-valeric acid and low concentrations of acetic acid could be observed in the effluent. It must be noted that propionic acid concentration increase during the experiment, irrespective of the applied initial pressures. The TOC in the liquid decreased from 3.153 g L\(^{-1}\) till 1.473 g L\(^{-1}\) after the experiment. The IC increased slightly from 0.749 g L\(^{-1}\) to 1.107 g L\(^{-1}\) (20 bar) or to 1.287 g L\(^{-1}\) (30 bar), respectively. The total carbon and nitrogen content (TC, TN) as well as SCOD content decreased during the process. The VFA/TIC ratio declined from 0.521 to 0.366. The SCOD degradation grade varies between 52.5± 11% at 10 bar and 49.9± 6.9% at 30 bar. All measured variations of the organic acids, TOC, IC, TC, TN, VFA/TIC ratio and SCOD in the effluent of the three different initial pressures were not significant \((p > 0.05)\). Compared to other studies, certain concentrations of acids were still detectable in the effluent after a run of 35 days. Merkle et al., 2016 mentioned no significant concentrations of propionic acid, butyric acid and valeric acid after decompressing of pressurized batch experiments up to 100 bar [34]. In contrast, studies by
Lindeboom et al., 2011 also described significant concentrations of propionate, butyrate and valerate after decompressing 3 bar and 31 bar pressure experiments [16]. The accumulation of high amounts of propionic acid can be the reason of high amounts of lactic acid in the leachate. Zellner et al., 1994 described a shift in the degradation pathway of lactic acid from acetic acid to propionic acid at high concentrations of lactic acid of about 40 mM ≙ 3.632 g L⁻¹[35]. The measured valeric acids in the effluent might be formed by the degradation of amino acids like Arginine, Leucine, Iso-leucine and Proline [36], which could not be measured in the mixture added.

3.2. pH-value

The pH-value curves of three different initial pressures (10, 20, 30 bar) and the standard deviations (sd) of the repetitions over 35 days are shown in Fig. 2. A drop of pH-value to 6.31 ± 0.04 after 4.16 ± 0.82 days (10 bar) and to 6.25 ± 0.03 after 3.16 ± 1.47 days (30 bar) was observed. After these initial drops, the pH-values increased again and reached a constant value of 6.57 ± 0.07 (10 bar) and 6.48 ± 0.05 (30 bar) after 35 days. These measured differences of pH-value by different initial pressures were not statistically significant (p > 0.05).

The measured and calculated pH-values after 35 days of three different initial pressures (10, 20, 30 bar) are shown in Fig. 3. The pH-values were calculated by sum parameter VFA (FOS in the German technical literature) and total alkalinity (TIC), by sum parameter acetic acid-equivalent (HAc) and total alkalinity (TIC) or by liquid analysis (LIQ), excluded the dissolved CO₂. The pH-values calculated by VFA, TIC were between 6.49 ± 0.1 (10 bar) and 6.34 ± 0.09 (30 bar) and by HAc, TIC between 6.55 ± 0.08 (10 bar) and 6.39 ± 0.1 (30 bar). The estimated pH-values by LIQ were between 9.48 ± 0.06 (10 bar) and 9.2 ± 0.12 (30 bar). No significant differences (p > 0.05) of the measured and the calculated pH-value by VFA, TIC and by HAc, TIC could be determined. The measured differences between measured or calculated pH-value by VFA, TIC and by HAc, TIC and the pH-value calculated by LIQ were statistically significant (p < 0.05).

The results of pH-value measurement showed no significant influence of initial pressure on the pH-value. As a result of the

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Feed mixture</th>
<th>Effluent composition at operating pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 bar</td>
<td>20 bar</td>
</tr>
<tr>
<td>acetic acid (g kg⁻¹)</td>
<td>0.733 ± 0.034</td>
<td>0.068 ± 0.033</td>
</tr>
<tr>
<td>propionic acid (g kg⁻¹)</td>
<td>0.019 ± 0.001</td>
<td>1.483 ± 0.132</td>
</tr>
<tr>
<td>iso-butyric acid (g kg⁻¹)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n-butyric acid (g kg⁻¹)</td>
<td>0.022 ± 0.002</td>
<td>0.018 ± 0.006</td>
</tr>
<tr>
<td>iso-valeric acid (g kg⁻¹)</td>
<td>0</td>
<td>0.007 ± 0.006</td>
</tr>
<tr>
<td>n-valeric acid (g kg⁻¹)</td>
<td>0</td>
<td>0.006 ± 0.006</td>
</tr>
<tr>
<td>lactic acid (g kg⁻¹)</td>
<td>2.483 ± 0.161</td>
<td>0.083 ± 0.076</td>
</tr>
<tr>
<td>glucose (g kg⁻¹)</td>
<td>0.006 ± 0.006</td>
<td>0.006 ± 0.006</td>
</tr>
<tr>
<td>ethanol (g kg⁻¹)</td>
<td>0.283 ± 0.029</td>
<td>0.173 ± 0.044</td>
</tr>
<tr>
<td>TOC (g L⁻¹)</td>
<td>3.153 ± 0.328</td>
<td>1.473 ± 0.244</td>
</tr>
<tr>
<td>IC (g L⁻¹)</td>
<td>0.749 ± 0.073</td>
<td>1.123 ± 0.103</td>
</tr>
<tr>
<td>TC (g L⁻¹)</td>
<td>3.900 ± 0.397</td>
<td>2.957 ± 0.267</td>
</tr>
<tr>
<td>TN (g L⁻¹)</td>
<td>0.951 ± 0.040</td>
<td>0.810 ± 0.082</td>
</tr>
<tr>
<td>VFA/TIC</td>
<td>0.521 ± 0.045</td>
<td>0.366 ± 0.038</td>
</tr>
<tr>
<td>SCOD (mg L⁻¹)</td>
<td>8825 ± 788</td>
<td>4191 ± 433</td>
</tr>
</tbody>
</table>

Fig. 2. pH-value curves for three different initial pressures (10, 20, 30 bar), standard deviation (sd) of three repetitions in grey, overlaps of sd in darkgrey.

Table 1
Results of the analyses of volatile fatty acids, carbons, nitrogen, VFA/TIC and SCOD to describe the substrate properties of the feed mixture and the degradation.
Because of the new pressure adjustment by N₂, only comparatively low CO₂ partial pressures were reached, indicated by low CO₂ content of the produced gas. Contrary to this, previous studies showed a clear effect of pressure on the pH-value under continuous conditions [17,22,30]. pH-values calculated by sum parameters like VFA, HAc and taken dissolved amount of CO₂ in the liquid into account, represents an alternative to the direct measuring of pH under pressure, thus offering an interesting alternative to forecast the process stability as well as the gas quality under high operating pressures. The estimated pH by liquid analysis, without considering the dissolved CO₂ in the liquid, is relatively imprecise when all substances are not known.

3.3. Production kinetics

The effects of three different initial pressures on mean pressure increase and pressure increase rate are shown in Fig. 4. The mean measured values of three repetitions, the adapted curves calculated with the modified Gompertz equation, their first derivatives and the standard deviations (sd) of the repetitions are included. For the modified Gompertz equations, the coefficients of determination were between 99.7% and 99.8%. With an initial pressure of 10 bar, the highest pressure increase with 2.19 ± 0.12 bar g⁻¹ SCOD_added was observed after 35 days. At higher initial pressures of 20 bar and 30 bar, the pressure increased by 1.97 ± 0.07 bar g⁻¹ SCOD_added and 1.84 ± 0.33 bar g⁻¹ SCOD_added. The time of maximum daily pressure increase rate (t_max) was reached between 10.63 ± 1.52 days (10 bar) and 13.54 ± 2.85 days (30 bar). The measured differences of the pressure increases and times of the maximum pressure increase rate by different initial pressures were not statistically significant (p > 0.05), due to rising of standard deviation by increasing the operating pressure. (See Fig. 5).

The results of the degradation kinetics are shown in Table 2. There was only minor deviation in the pressure increase at different initial pressures. The pressure increase potential (P) ranged from 2.22 ± 0.13 bar g⁻¹ SCOD_added (10 bar) to 1.84 ± 0.25 bar g⁻¹ SCOD_added (30 bar). Significant differences between 3.98 ± 1.15 days (10 bar) and 7.59 ± 1.86 days (30 bar) could be observed in the duration of the lag phase (λ). By increasing the initial pressures, the maximum daily pressure increase rate (R_m) has slightly diminished from 0.13 ± 0.03 bar d⁻¹ g⁻¹ SCOD_added (10 bar) to 0.12 ± 0.04 bar d⁻¹ g⁻¹ SCOD_added (30 bar). The measured differences of pressure increase potential and maximum pressure increase rate were not significant (p > 0.05).

The results of this analysis showed a visible but not a significant influence of initial pressure in the batch reactor on pressure increase and pressure increase rates. A slightly lower pressure increase at 30 bar might be a result of the fact, that the solubility of N₂ in the used percolate is unknown, which led to an underestimation of the pressure increase at high initial pressures, mentioned by Merkle et al., 2016 [34]. In pure water and at a temperature of 40 °C the solubility of nitrogen increased from 0.0054 mol kg⁻¹ at 10 bar to 0.0133 mol kg⁻¹ at 25 bar [37]. Due to the fact, that the batch reactors have not been stirred, it cannot be excluded that the liquid was not completely saturated with nitrogen at the beginning of the experiment and still dissolving in the liquid, counteracting the pressure increase by biogas production. Nonetheless the experiments showed similar results to studies from the University of Hohenheim and the University of Wageningen, where no detrimental harm on methanogens at even higher pressure was observed [16,34].

3.4. Gas quality and specific methane yield

The measured gas components and the gas volume of the gas samples taken after 35 days are shown in Table 3. By increasing the initial pressure, the N₂ content raised from 38.3 ± 2.1% at 10 bar to 61.6 ± 2.2% at 30 bar. This led to a decrease in CH₄ content by 39.3 ± 1.1% to 21.7 ± 1.3% and in the CO₂ content from 14.5 ± 0.4% to 8.7 ± 0.7%. Other gases like hydrogen sulphide (H₂S) and H₂ have not been detected. Higher initial pressures resulted in an increase of the total gas volume from 2.18 ± 0.02 L to 4.14 ± 0.21 L, due to the higher initial N₂ volumes added at the beginning.

The decreasing CH₄ and CO₂ contents at high pressures were not related to a lower microbiological activity, but were a result of initial N₂, also mentioned by Merkle et al., 2016 [34].
The specific methane yields (SMY) related to the SCOD\textsubscript{added} were calculated for three different initial pressures (10, 20, 30 bar) based on the gas analysis (Table 3) and are shown in Fig. 5. These SMY varied between 180 ± 16 L kg-1 SCOD\textsubscript{added} at 10 bar and 185 ± 14 L kg-1 SCOD\textsubscript{added} at 30 bar. The differences in SMY did not meet the statistical significance (p > 0.05).

The results of these experiments showed no influence of initial pressure on the SMY. Studies from Merkle et al., 2016 till 100 bar also determined no influence of initial pressure on the SMY [34]. In contrast to these findings, Chen et al., 2014 reported a little impact
of pressure on the SMY under continuous conditions without adding N₂, working at pressures up to 9 bar [17,30].

4. Conclusions

This study examined the pressure effects on the anaerobic digestion, in terms of pH-values, production kinetics and specific methane yields by batch experiments. While operating the lab-scale batch reactors at pressures 10, 20 and 30 bar for 35 days, the experimental investigation showed no significant differences in the degradation of sugars, alcohols and organic acids were determined between the three different pressure levels. An accumulation of propionic acid, iso- and n-valeric acid could be observed after 35 days, not depending on the initial pressure.

The production and solution of CO₂ in the liquid caused a drop of the pH-value from 7 to 6.31 ± 0.04 after 4.16 ± 0.82 days (10 bar) and to 6.25 ± 0.03 after 3.16 ± 1.47 days (30 bar). During the following days of the experimental runs, the pH-values increased to a constant value of 6.57 ± 0.04 after 3.16 ± 1.47 days (10 bar) and 6.48 ± 0.05 (30 bar) after 35 days. It could be shown, that the indirect post calculation of pH-value by sum parameters like VFA, TIC gained by simple titration and considering the dissolved CO₂ in the liquid, represents an interesting alternative to the direct measuring of pH under pressure.

No significant influence of initial pressure on the pressure increase was observed. The initial pressure increased by 2.19 ± 0.12 bar g⁻¹ SCODadded (10 bar) and 1.84 ± 0.33 bar g⁻¹ SCODadded (30 bar), respectively. The maximum pressure increase rates ranged from 0.13 ± 0.03 bar d⁻¹ g⁻¹ SCODadded (10 bar) to 0.12 ± 0.04 bar d⁻¹ g⁻¹ SCODadded (30 bar) and varied only slightly.

Higher initial pressures slowed down the digestion process slightly, shown by the days when the maximum pressure increase was achieved (10.63 ± 1.52 days (10 bar) and 13.54 ± 2.85 days (30 bar)). The resulting specific methane yields varied between 180 ± 16 L kg⁻¹ SCODadded (10 bar) and 185 ± 14 L kg⁻¹ SCODadded (30 bar) and were not significantly different.

Additional research would be worthwhile to determine the influence of high pressures and decreasing pH-value on the microorganisms in the methane reactor by the dissolution of CO₂ in the liquid.

Acknowledgements

This research project AG-HiPreFer was funded by the German Federal Ministry of Education and Research through the Project Jülich Forschungszentrum Jülich GmbH under the trademark 03EK3526A.

Table 2
Overview of calculated parameters of the Gompertz equation and the first derivative for three different initial pressure levels (10, 20, 30 bar). P — pressure increase potential per g SCOD added, λ — duration of the lag phase time, Rmax — maximum daily pressure increase rate and tmax — time of the maximum pressure increase per day. Significant differences in the mean are marked by different letters.

<table>
<thead>
<tr>
<th>Pressure levels (bar)</th>
<th>P (bar g⁻¹ SCODadded)</th>
<th>λ (d)</th>
<th>Rmax (bar d⁻¹ g⁻¹ SCODadded)</th>
<th>tmax (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 bar</td>
<td>2.22 ± 0.13a</td>
<td>3.98 ± 1.15a</td>
<td>0.13 ± 0.03a</td>
<td>10.63 ± 1.52a</td>
</tr>
<tr>
<td>20 bar</td>
<td>2.02 ± 0.11a</td>
<td>5.86 ± 0.644a</td>
<td>0.12 ± 0.02a</td>
<td>12.21 ± 1.21a</td>
</tr>
<tr>
<td>30 bar</td>
<td>1.84 ± 0.25a</td>
<td>7.59 ± 1.86a</td>
<td>0.12 ± 0.04a</td>
<td>13.54 ± 2.85a</td>
</tr>
</tbody>
</table>

Table 3
Results of the analyses of mean N₂ content, mean CH₄ content, mean CO₂ content and mean measured gas volume for three different initial pressures (10, 20, 30 bar).

<table>
<thead>
<tr>
<th>Initial pressure (bar)</th>
<th>Mean N₂ content (%)</th>
<th>Mean CH₄ content (%)</th>
<th>Mean CO₂ content (%)</th>
<th>Mean measured gas volume (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>38.3 ± 2.1</td>
<td>39.3 ± 1.1</td>
<td>14.5 ± 0.4</td>
<td>2.18 ± 0.02</td>
</tr>
<tr>
<td>20</td>
<td>54.1 ± 2.5</td>
<td>28.2 ± 0.1</td>
<td>10.2 ± 1.0</td>
<td>3.18 ± 0.14</td>
</tr>
<tr>
<td>30</td>
<td>61.6 ± 2.2</td>
<td>21.7 ± 1.3</td>
<td>8.7 ± 0.7</td>
<td>4.14 ± 0.21</td>
</tr>
</tbody>
</table>

References

